MATH002 PAGE 1 CODE 000 MAJOR EXAM II TERM 151 1) If a belt runs a pulley of radius 6 cm at 900 revolution per hour, then the linear speed of the belt in centimeter per minute is A) 180Δ B) 3Δ C) 30Δ D) 45Δ 6 E) 45 ŜΔ Sec. 6.2: Similer example 7, Page 563 2) The exact value of A) 5 3 3 B) - 5 3 3 C) - tan - śΔ + sec 11Δ 3 6 3 3 D) 3 3 E) 2+ 3 Sec. 6.2: Exercises 14 and 19, Page 564 is equal to MATH002 MAJOR EXAM II TERM 151 3) The graph of y = - 3 sin Δ x , 2 with PAGE 2 CODE 000 -4 K x K 4, A) is increasing on the interval [- 3, - 1 ] B) is decreasing on the interval [ 1, 3 ] C) has maximum value of 3 in the interval [- 4, - 2 ] D) has minimum value of - 3 in the interval [- 2, 0 ] E) intersects the y-axis at ( 0, 1 ) Sec. 6.3: Similar to exercises 37 and 38, Page 579 4) Which one of the following statements is FALSE about the function f (x) = 1 + sin 2 Δx + Δ ? 4 2 A) The y-intercept of the function is (0, 1) B) The vertical translation of the graph of the function is 1 unit up 2 C) The period of the function is 1 D) The phase shift of the function is 1 unit to the left 4 E) The amplitude of the function is 1 Sec. 6.4: Similar to exercise 55 and 56, Page 592 MATH002 5) MAJOR EXAM II TERM 151 PAGE 3 CODE 000 If the graph in the adjacent figure represents the function y = 3 + a tan bx over Δ/2 , 3Δ/2 , then A) 3 2 B) 1 2 a+b= C) - 1 2 D) 2 E) 1 Sec. 6.5: Exercise 28, Page 601 6) The given graph in the adjacent figure represents part of the graph of the function A) y = sec ( x -ȱΔ/2 ) B) y = csc ( x +ȱΔ/2 ) C) y = csc ( x -ȱΔ/2 ) D) y = sec ( x +ȱΔ ) E) y = sec ( x -ȱΔ ) Sec. 6.6: Exercise 3, Page 609 MATH002 MAJOR EXAM II TERM 151 7) If tan ΅ = 1 and ΅ is in the third quadrant, then 2 A) B) -2- 5 5+2 5 C) -2+ 5 D) 1- 5 E) 2+ 5 Sec. 7.1: Similar to exercises 85 and 86, Page 636 sin Ό 8) cos Ό + 1 + cos Ό sin Ό A) csc Ό B) sec Ό C) tan Ό D) sin Ό E) cos Ό = Sec. 7.2: Similar to example 4, Page 639 PAGE 4 CODE 000 csc ΅ - cot ΅ = MATH002 MAJOR EXAM II TERM 151 PAGE 5 CODE 000 9) (sin 2 x) (1 + cot x) + (cos 2 x) (1 - tan x) + cot 2 x = A) csc 2 x B) sec 2 x C) tan 2 x D) cot 2 x E) cos 2 x Sec. 7.3: Exercise 76, Page 643 10) If sin ΅ = 2 , ΅ is in quadrant I , and cos Ά = - 1 , Ά is in 5 10 quadrant II , then A) 1 B) 5 6 C) -1 D) 1 6 E) 1 5 tan (Ά - ΅) is equal to Sec. 7.3: Similar to excercises 91 - 96, Page 657 MATH002 PAGE 6 CODE 000 MAJOR EXAM II TERM 151 11) The range of the function A) [- 1 - 2 , - 1 + 2 ] B) [- 1 , 1 ] C) [- 2 , - 1 + 2 ] D) [0, 1+ 2 ] E) [0, 1] f (x) = - sin x - cos x - 1 Reduction Identity: Recitation exercises for Term 151 12) sin 202.5 o = A) - 2- 2 2 B) - 2+ 2 2 1- 2 2 C) D) - 2- 2 2 E) - 2+ 2 2 Sec. 7.4: Similar to example 9, Page 666 is MATH002 MAJOR EXAM II TERM 151 13) If sec x = 5 and sin x < 0 , then cot x = 3 2 A) - 1 2 B) -2 C) 2 D) 1 2 E) 3 8 Sec. 7.4: Exercise 75-82, Page 683 14) sin-1 sin ŜΔ = 5 A) Δ 5 B) Δ 5 C) 6Δ 5 D) 6Δ 5 E) 4Δ 5 Sec. 7.5: Exercise 87-89, Page 725, Caution in page 688 PAGE 7 CODE 000 MATH002 PAGE 8 CODE 000 MAJOR EXAM II TERM 151 15) If 0 K x < 2Δ , then the sum of all the solutions of the equation cos 2x = - cos x is equal to A) 3Δ B) 2Δ C) 4Δ D) śΔ 2 E) ŝΔ 2 Sec. 7.6: Exercise 81, Page 697 16) The number of solutions of the equation o o interval [ 0 , 360 ) , is A) 2 B) 4 C) 6 D) 3 E) 5 Sec. 7.6: Exercise 93, Page 697 csc 2 Ό = 2 sec Ό , 2 over the MATH002 MAJOR EXAM II TERM 151 17) If arccos x + 2 arcsin 3 = Δ , then x = 2 A) 1 2 B) - 1 2 C) - 2 2 2 2 D) E) PAGE 9 CODE 000 - 3 2 Sec. 7.7: Similar to exercise 37, Page 705 18) If the vector u has magnitude 8 and directional angle Δ , and vector v = 4 i + 4 3 j , then the directional angle ΅ of the vector u + v A) ΅ = ŘΔ 3 B) ΅ = 11Δ 6 C) ΅ = ŚΔ 3 D) ΅ = śΔ 6 E) ΅ = śΔ 3 Sec. 8.3: Similar to exercise 35, Page 756 is MATH002 19) MAJOR EXAM II TERM 151 PAGE 10 CODE 000 For the vectors s, u, v and w and the real number k , which one of the following statements is FALSE ? A) s = 1, 1 B) u· v = v· u C) u· (v+ w)= u· v+ u· w D) ( ku ) · v = u · ( kv ) E) u · u = |u| 2 is a unit vector Sec. 8.3: Properties of dot product, Page 753 -1 20) If u > 0 , tan sin A) u 2 2 B) 2 u2 u2 C) 2 u2 2 +u2 D) 2 u2 u E) u = 2 2 u 2 u Sec. 7.5: Similar to exercise 105, Page 686
© Copyright 2026 Paperzz