How to determine diffusion rates experimentally ? Patrice Theulé Aix-Marseille Université Physics of Ionic and Molecular Interactions laboratory Grain-surface networks and data for astrochemistry workshop, Leiden 2014 Outline generalities on diffusion surface diffusion volume diffusion why is diffusion important ? for solid-state reactivity • diffusion-limited reactivity • cage effect for gas-solid interaction • diffusion-limited desorption • trapping why is diffusion important ? for solid-state reactivity • diffusion-limited reactivity • cage effect for gas-solid interaction • diffusion-limited desorption • trapping why is diffusion important ? for solid-state reactivity • diffusion-limited reactivity • cage effect for gas-solid interaction • diffusion-limited desorption • trapping how do we consider diffusion ? our representation of the diffusion phenomenon (the model) underlies: the experiments carried out the way we analyze the experimental data the measured quantities Diffusion: the macroscopic approach The diffusion equation particle flux 2D diffusion [particles.cm-1.s-1] n [particles.cm-2] [cm2.s-1] 3D diffusion n [particles.cm-3] [particles.cm-2.s-1] [cm2.s-1] The diffusion equation 3D diffusion [particles.cm-2.s-1] particle flux the diffusion equation [cm-2.s-1] [cm-3.s-1] 2D diffusion [particles.cm-1.s-1] experiments usually designed to have diffusion along a single dimension [cm-2.s-1] [cm-2.s-1] [cm2.s-1] The diffusion coefficient The Stockes-Einstein equation (for spherical particles diffusion and low Reynolds numbers) D= k BT 6π η r the size of the diffusing particles the viscosity (Pa.s-1 or kg.m-2.s-1) Diffusion: the microscopic approach Site to site diffusion the Einstein-Smoluchowski random walk (Brownian motion) • thermal hopping from one binding site to another Eb mπ 2 k exp = − thermal hopping rate: hop k T 2n s E D B grain -1 [s ] ν0 • models : 1 D view tunneling diffusion through the binding energy barrier tunneling rate: ktun = v0 exp[-(4πa/h)(2mEb)1/2] [s-1] Macroscopic-microscopic approaches relation The Einstein equation relates macroscopic transport coefficient D with microscopic information on the mean square distance <r2(t)> of molecular migration over the time t 2D diffusion 2 r (t ) = 4 × D × t r2=x2+y2 3D diffusion 2 r (t ) = 6 × D × t r2=x2+y2+z2 Outline generalities on diffusion surface diffusion volume diffusion Outline generalities on diffusion surface diffusion • • • • secondary ion mass spectroscopy (SIMS) atomic force microscopy (AFM) thermal desorption spectroscopy (TDS) experiments laser resonant desorption (LRD) volume diffusion Secondary ion mass spectroscopy 1-2 nm a very sensitive surface analysis technique, but not quantitative Secondary ion mass spectroscopy r 2 (t ) PDMS: polydimethylsiloxane Secondary ion mass spectroscopy circular area (radius r) D= 10-7-10-6 cm2.s-1 Outline diffusion surface diffusion • • • • secondary ion mass spectroscopy (SIMS) atomic force microscopy (AFM) thermal desorption spectroscopy (TDS) experiments laser resonant desorption (LRD) volume diffusion Atomic Force Microscopy Atomic Force Microscopy IMC= indomethacin= 1-(p-chlorobenzoyl)-5-methoxy-2-methyl-indole-3-acetic acid h(t) 2 r (t ) Atomic Force Microscopy AFM h(t) grating amplitude K grating decay constant [s-1] h(t ) = h0 × exp(− K t ) optical diffraction Zhu et al., Phys. Rev. Lett., 106, 256103, 2011 Atomic Force Microscopy • at high temperature (T > 327 K) the viscous flows dominates • at low temperature (T < 327 K) the surface diffusion dominates • surface diffusion is at leat 106 times faster than bulk diffusion Zhu et al., Phys. Rev. Lett., 106, 256103, 2011 Outline diffusion surface diffusion • • • • secondary ion mass spectroscopy (SIMS) atomic force microscopy (AFM) thermal desorption spectroscopy (TDS) experiments laser resonant desorption (LRD) volume diffusion Surface TDS experiments indirect method, with several processes at work need a model, assumptions and several parameters to interpret the data 3. detection: temperature ramp, desorption and mass spectroscopy detection of the product increased mobility and reactivity, Edes 2. reactants diffusion + reaction at a fixed temperature [particles.cm-1.s-1] D [cm2.s-1] 1. reactants (atoms, simple molecules) deposition (at room temperature) Flux, sticking coefficient Ereact, reaction order Surface TDS experiments + other groups Surface TDS experiments 1. bombardment at fixed temperature (10-15K) for several durations 2. no waiting time at a fixed temperature, diffusion and reactivity assumed very fast 3. Detection of H2 production by TPD on a ramped temperature Katz et al., ApJ,522, 305, 1999 Surface TDS experiments assumptions: Langmuir-Hinshelwood mechanims only, no Eley-Rideal mechanims, thermalized atoms, single monolayer coverage, no barrier for reaction, orders of diffusion, distributions of sites, roughness of the surface, microscopic diffusion, limiting rate limit, ν model: incoming flux (calibration) desorption chemistry: 1 (no barrier) diffusion: single Arrhenius law H H2 chemical desorption µ= fraction of H2 remaining on the surface diffusion energy E0 uncertainties on several parameters, correlation, more parameters do not necessarily help Katz et al., ApJ,522, 305, 1999 Outline diffusion surface diffusion • • • • secondary ion mass spectroscopy (SIMS) atomic force microscopy (AFM) thermal desorption spectroscopy (TDS) experiments laser resonant desorption (LRD) volume diffusion Laser Resonant Desorption diffusional refilling LRD surface diffusion measurement pb: adsorption from the background must be subtracted from the diffusion refilling signal upper limit (laser beam spot size) of D < 4 10 -11 cm2.s-1 surface diffusion not measurable for most surface molecules -> polar molecules : absorption (solvation) into the ice bulk ? -> bulk behavior ? -> non-polar molecules: formation of small islands ? breaking from the island harder than desorbing ? Outline generalities on diffusion surface diffusion volume diffusion Outline generalities on diffusion surface diffusion volume diffusion • • • • • laser resonant desorption neutron scattering secondary ion mass spectroscopy isothermal desorption kinetics isothermal reactivity kinetics Laser Resonant Desorption LRD bulk diffusion measurement: depth-profiling experiments I laser assisted- desorption (OH stretching vibration) + mass detection (QMS) t=0 t Livingston F.E., Smith J.A. and George S.M., J.Phys.Chem. A, 106, 6309, 2002 Livingston F.E. and George S.M., J.Phys.Chem. A, 105, 5155, 2001 Livingston F.E., Smith J.A. and George S.M., Anal. Chem., 72, 5590, 2000 Laser Resonant Desorption LRD bulk diffusion measurement: depth-profiling experiments II Laser Resonant Desorption fit against an Arrhenius law T > 223 K interstitial-mediated (Frenkel) diffusion T < 223 K vacancy-mediated (Schottky) diffusion H2O self-diffusion ≈ 65 kJ.mol-1 (in crystalline ice) 1-3 orders of magnitude Outline generalities on diffusion surface diffusion volume diffusion • • • • • laser resonant desorption neutron scattering secondary ion mass spectroscopy isothermal desorption kinetics isothermal reactivity kinetics Neutron scattering • neutrons can probe the bulk of a material because they are electrically neutral, and as such penetrate matter deeper than electrically charged particles. • neutrons can probe translational motion on the nanometer length scale λ ~ 1 nm vs λ ~ 500 nm for optical radiation, which is more relevant to molecular motion • neutron time-of-flight scattering • Bragg reflection (neutron triple-axis spectroscopy, neutron backscattering) q = scattering vector + quasi-elastic neutron scattering, neutron spin echo Neutron scattering TNB= tris(naphtylbenzene) =1,3-bis-(1-naphtyl)-5-(2-naphtly)benzene h-TNB and d-TNB (protio and deuteri-TNB)) Swallen et al., J. Chem. Phys., 124, 184501, 2006 Neutron scattering 1 T=342 K 3 5 bulk molecular diffusion on nanometric scale decay of the structure factor measured= characteristic time D = 1x1017 cm2.s-1 at 342 K Swallen et al. Science, 315, 353, 2007 Neutron scattering high sensitivity to the deposition temperature super-exponential decays with an apparent induction time or onset time (plateau) before any translational motion occurs spatially heterogeneous process or highly complex relaxation mechanisms non-Fickian diffusion ? Swallen et al., J. Chem.Phys., 128, 214514, 2008 Outline generalities on diffusion surface diffusion volume diffusion • • • • • laser resonant desorption neutron scattering secondary ion mass spectroscopy isothermal desorption kinetics isothermal reactivity kinetics Secondary ion mass spectroscopy IMC= indomethacin= 1-(p-chlorobenzoyl)-5-methoxy-2-methyl-indole-3-acetic acid d-IMC= indomethacin-d4 stable glass T= 318 K 850 nm Sepulveda, Swallen and Edinger, J. Chem. Phys., 138, 12A517-1, 2013 Secondary ion mass spectroscopy TNB= tris(naphtylbenzene) =1,3-bis-(1-naphtyl)-5-(2-naphtly)benzene h-TNB and d-TNB (protio and deuteri-TNB)) T=345 K Swallen et al., Phys. Rev. Lett., 102, 065503, 2009 Outline generalities on diffusion surface diffusion volume diffusion • • • • • laser resonant desorption neutron scattering secondary ion mass spectroscopy isothermal desorption kinetics isothermal reactivity kinetics Isothermal desorption kinetics experiments [particles.cm-2.s-1] D [cm2.s-1] Isothermal desorption kinetic experiments X = CO, HNCO, H2CO or NH3 bulk ASW ice d Mispelaer A&A 2013 IR spectroscopy monitoring real isothermal experiments, no need to ramp the temperature for detection Isothermal desorption kinetic experiments NH3 115 K no plateau at t = 0 not the best fit ever D(115K) Isothermal desorption kinetic experiments absence of plateau diffusion diffusion bulk diffusion or surface diffusion ? Isothermal desorption kinetic experiments IK on CO2 IK on NH3 the water desorption limits the highest temperature decay curves cannot be fitted with a diffusion equation only (desorption + diffusion): limits on the lowest temperature upper limits on the diffusion coefficients Isothermal desorption kinetic experiments • lowest temperature limit set by the fast desorption assumption (boundary conditions) + experimental conditions (background pressure, long-term stability of the FTIR spectrometer,…) • highest temperature limit set by the co-desorption with the ice mantle D(T) measurement on a limited range of temperature uncertainty of D0 and Ediff needs few tens of ML to observe diffusion limitation on timescales Isothermal desorption kinetic experiments IK at T = 100 K sensitivity on the deposition temperature k= 1.3 +/- 0.7 10-4 s-1 k= 2.5 +/- 0.4 10-4 s-1 Isothermal desorption kinetic experiments the reproducibility dominates the uncertainty Isothermal desorption kinetic experiments r 2 (t ) ≈ D × t cristallization water self-diffusion (vacancy diffusion) ? reorganization 1/200 K 1/100 K 1/67 K CO Isothermal desorption kinetic experiments kinetics of the pore collapse activation energy 0.9 kJ.mol-1 krelaxation= 1.15 10-3 x exp(0.9 kJ.mol-1 /RT) 10 K trelaxation ≈ 1.4 year 40 K trelaxation ≈ 4.6 hours Isothermal desorption kinetic experiments r 2 (t ) ≈ D × t cristallization water self-diffusion (vacancy diffusion) ? reorganization 1/200 K 1/100 K 1/67 K CO Isothermal desorption kinetic experiments molecular translational diffusion appears to occur concomitantly with crystallization (around 155 K) apparent diffusivity 10 -12+/-1 cm2.s-1 (diffusivity <10-18 cm2.s-1 in crystalline ice at 160 K) ASW behaves like a very viscous liquid, 107+/-1 times greater than water at 300 K. Isothermal desorption kinetic experiments Smith R.S., Matthiesen J., Kay B.D., J.Chem.Phys. 133, 174504, 2010 a rare gas-gas permeation through amorphous overlayers (supercooled liquids) because of compensation between the parameters, there is an infinite number of prefactors and activation energies pair that yields the same desorption peak temperature only one pair of parameters reproduces the overall TPD lineshape Isothermal desorption kinetic experiments universal scaling relationships: scaling factor for an isothermal diffusion kinetics: for a temperature programmed permeation experiment: Paper I : Smith R. S., Matthiesen J. and Kay, B.D., J.Chem.Phys. 133, 174504, 2010 Paper II : Matthiesen J. , Smith R. S. and Kay, B.D., J.Chem.Phys. 133, 174505, 2010 D(T) Fig 7 Arrhenius temperature dependence characteristics of « strong » liquids: the diffusion is related to the crossing of a single barrier D(T ) = D0 × exp(− E / RT ) unusually large prefactor (D0=1.85 1019 cm2.s-1) and activation energies (E=64.9 kJ.mol-1) are characteristics of a fragile liquid (non following a simple Arhenius behavior) close to the crystallization energy The metastable phase diagram of water temperature dependence given by Williams-Landel-Ferry (WLF) and Vogel Fulcher Tamman (VFT) equations and not by the Arrhenius equation E=7.2 +/- 0.8 kJ.mol-1 T0=119 +/- 3 K Smith et al. Chem.Phys. 2000 glass transition of water Tg (H2O) = 136 K VFT (Vogel-Fulcher-Tammann ) temperature dependence characteristics of « fragile » liquids: the diffusion is related to collective complex motion, where diffusion is occurring on a rugged energy landscape. D(T ) = D0 × exp(− B /(T − Ts ) D diverges at Ts The VFT equation is used for the description of temperature dependence of glassy films viscosity for Ts < T < Tglass Ts: threshold of infinitely long relaxation time (disappearance of the configurational entropy) D0 ≈ 101-2cm2.s-1 , B≈ 1400K-1500 ≈ 11.5-12.5 kJ.mol-1, Ts ≈ 65 K very different results, closer to Edes/3 for a thin film (<20 ML) the diffusivity is not representative of bulk diffusivity : « softened » near surface layer of ≈ 8 ML in which there is a faster diffusion The metastable phase diagram of water glass transition of water Tg (H2O) ≈ 136 K The 'phases' may be stable for hours or days. metastable 'phase lines' may move with the direction and time taken of the process . importance of the time dependence Molecular-dynamics simulation of amorphous-alloys., 2. self-diffusion, Brandt, E H, J. Phys.: Condens. Matter, 50, 1003-1014, 1989 Anomalous Fickian diffusion in water ice 65 kJ.mol-1 Mispelaer et al. A&A 2013 diffusion probably driven by the crystallization of the ASW ice mantle k BT Should we use the Stokes-Einstein equation for diffusion particles through liquid D = with low Reynold number (very highly viscosity) instead ? 6π × η × r r radius of the particle ηliq.water� ηAWS=2.2 x 10-19 m2 s-1 at 150 K � ηcryst.ice η viscosity Outline generalities on diffusion surface diffusion volume diffusion • • • • • laser resonant desorption neutron scattering secondary ion mass spectroscopy isothermal desorption kinetics isothermal reactivity kinetics Isothermal reactivity kinetic experiments to monitor the product formation to use chemical reactions to access smaller time intervals no need to ramp the temperature: detection in the solid Isothermal reactivity kinetic experiments A + B A A A B H2O molecules : B B the dilution is slowing down the reaction and the reactivity can be used to measure diffusion rates on small lengthscales Isothermal reactivity kinetic experiments A= A A + B= B B H2O molecules : A B A B HNCO NH3 Reactants decay curve best fitted by a bi-exponential function (reactivity + reorganization) or by an Avrami equation HNCO: NH3: H2O the Johnson-Mehl-Avrami-Kolmogorov (JMAK) or Avrami equation describes the kinetics of crytallization HNCO(t)= HNCO(t=0) . exp(-ktn) time (s) Mispelaer et al. A&A 2012 Isothermal reactivity kinetic experiments A= A A + B= B B A B A B kreaction NH3 Noble et al., submitted to PCCP H2O molecules : CO2 Isothermal reactivity kinetic experiments k (T ) = A e − Ea k BT real isothermal experiments, no need to ramp the temperature for detection Noble et al., submitted to PCCP Isothermal reactivity kinetic experiments ab-initio calculations Noble et al., submitted to PCCP Isothermal reactivity kinetic experiments A= A A A A + B= B B H2O molecules : B B in progress Conclusion diffusion is a fundamental process as it impacts desorption, reactivity and trapping different techniques, each one with its pros and cons importance of the water ice substrate (morphology, phase change kinetics) since amorphous ice exhibits liquid-like translational diffusion prior to crystallization difference in surface diffusion on « stable » substrates (silicate, graphite, crystalline ice ) and surface/volume diffusion on metastable amorphous water ice ice analogues are not totally interstellar ices: to be careful about experimental biases lack of knowledge on interstellar ice morphology and its evolution (amorphisation, compactification) under VUV photons, exothermic reactions, …) Thank you for your attention
© Copyright 2026 Paperzz