Math 211 7–20–2007 Review Problems for Test 1 These problems are provided to help you study. The presence of a problem on this sheet does not imply that a similar problem will appear on the test. And the absence of a problem from this sheet does not imply that the test will not have a similar problem. 1. Compute the following derivatives: (a) d (arctan x)5 + arctan(x5 ) . dx (b) d arcsin(ex + 1). dx (c) d (tan−1 (sec−1 x)). dx (d) d cos x . dx cos−1 x 2. Compute the following limits: 2 − 2ex−1 . x→1 sin(x − 1) √ (b) lim+ x ln x. (a) lim x→0 cos 2x . x2 + 3x + 1 2x 3 (d) lim 1 + . x→∞ x p x2 + 4x − x . (e) lim (c) lim x→0 x→+∞ (f) lim x→0 sin 4x + tan 5x . x cos 3x + 12x x − x cos x . x→0 x sin x + 2x 1/x . (h) lim+ e2x + x (g) lim x→0 3. Compute Z (cos x)3 1 + (sin x)1/2 dx. 4. Compute Z (cos 7x)4 dx. 5. Compute Z (sec 3x)5 tan 3x dx. 6. Compute Z (tan x)4 dx. 1 7. Compute Z (csc 2x)3 (cot 2x)3 dx. Z p 8. Compute x2 − 1 dx. 9. Compute Z ln(x2 + 5) dx. 10. Compute Z x2 11. Compute Z p x 25 − x2 dx. 12. Compute Z x2 √ dx. x2 + 1 13. Compute Z 3 + 4x + 5x2 + 3x3 dx. x2 (x + 3) 14. Compute Z x3 e4x dx. 15. Compute Z e4x cos 2x dx. 16. Compute Z cos 3x sin 2x dx. 17. Compute Z dx dx. x1/2 (x1/3 + x1/4 ) 18. Compute Z x2 p 25 − x2 dx. x−2 dx. − 8x + 25 19. How would you try to decompose 2(x − 2)2 using partial fractions? x3 (x2 + 4)2 20. Why do you try the partial fractions decomposition 5x C A B + = + 2 2 (x − 1) (x + 1) x − 1 (x − 1) x+1 rather than the decomposition B A 5x + = ? 2 2 (x − 1) (x + 1) (x − 1) x+1 21. What is wrong with the following “partial fractions decomposition”? 7 A B C = + + . x(x − 1) x x x−1 22. Find the partial fractions decomposition of −3x4 + x3 − 6x2 − 3 . x(x2 + 1)2 2 23. (a) Compute −x2 + 8x − 4 dx. x(x2 + x − 2) Z (b) If you use the antiderivative in (a) to compute Z 1/2 −1 −x2 + 8x − 4 dx, x(x2 + x − 2) you get [2 ln |x| + ln |x − 1| − 4 ln |x + 2|]1/2 −1 = 1 1 2 ln + ln − 4 ln 32 − (2 ln 1 + ln 2 − 4 ln 1) ≈ −4.39445. 2 2 Does this computation make sense? Why or why not? 24. Find the area of the region under y = Z ∞ 25. Compute 11 26. Compute Z x from x = 0 to ∞. (x2 + 1)2 xe−3x dx. 0 √ 3 2 27. Prove that Z 1 dx. x−3 ∞ −x4 e dx converges. [Hint: Compare the integral to Z ∞ e−x dx.] 0 0 Solutions to the Review Problems for Test 1 1. Compute the following derivatives: (a) d (arctan x)5 + arctan(x5 ) . dx 1 5x4 d (arctan x)5 + arctan(x5 ) = 5(arctan x)4 · 2 . + dx x + 1 1 + x10 (b) (c) d arcsin(ex + 1). dx d (tan−1 (sec−1 x)). dx d ex . arcsin(ex + 1) = p dx 1 − (ex + 1)2 d (tan−1 (sec−1 x)) = dx (d) 1 1 + (sec−1 x)2 d cos x . dx cos−1 x (cos −1 d cos x = dx cos−1 x x)(− sin x) − (cos x) (cos−1 x)2 3 1 √ |x| x2 − 1 −1 √ 1 − x2 . . 2. Compute the following limits: 2 − 2ex−1 . x→1 sin(x − 1) (a) lim −2ex−1 −2 2 − 2ex−1 = lim = = −2. x→1 cos(x − 1) x→1 sin(x − 1) 1 lim (b) lim+ x→0 √ x ln x. lim x→0+ (c) lim x→0 x2 √ 1 ln x x = lim+ −2x1/2 = 0. x ln x = lim+ = lim+ 1 1 x→0 x→0 x→0 √ − 3/2 x 2x cos 2x . + 3x + 1 lim x→0 cos 2x = 1. x2 + 3x + 1 L’Hôpital’s rule doesn’t apply, because plugging in x = 0 gives 1, which is not an indeterminate form. 2x 3 (d) lim 1 + . x→∞ x 2x 3 Set y = 1 + , so x 2x 3 3 . = 2x ln 1 + ln y = ln 1 + x x Then 3 ln 1 + 3 3 x lim ln y = lim 2x ln 1 + = = 2 lim x ln 1 + = 2 lim 1 x→∞ x→∞ x→∞ x→∞ x x x 3 1 − 2 3 x 1+ x 2 lim = 6. x→∞ 1 − 2 x So lim x→∞ (e) lim x→+∞ 3 1+ x 2x = e6 . p x2 + 4x − x √x2 + 4x + x p p x2 + 4x − x2 2 2 lim = lim √ = x + 4x − x = lim x + 4x − x · √ 2 x→+∞ x→+∞ x + 4x + x x→+∞ x2 + 4x + x 1 4x 4 4x x = lim √ · = = lim lim √ √ 2 2 1 1 x→+∞ x→+∞ x→+∞ x + 4x + x x + 4x + x x2 + 4x + 1 x x 4 lim r x→+∞ (f) lim x→0 4 4 = = 2. = lim r x→+∞ 2 4 x + 4x + 1 1 + + 1 x x2 4 2 sin 4x + tan 5x . x cos 3x + 12x 4 cos 4x + 5(sec 5x)2 9 sin 4x + tan 5x = lim = . x→0 −3x sin 3x + cos 3x + 12 x→0 x cos 3x + 12x 13 lim (g) lim x→0 x − x cos x . x sin x + 2x x − x cos x 1 + x sin x − cos x 1+0−1 = lim = = 0. x sin x + 2x x→0 x cos x + sin x + 2 0+0+2 lim x→0 (h) lim+ e2x + x x→0 1/x Set y = e2x + x . 1/x . Then 2x ln y = ln e +x 1/x ln e2x + x 1 2x . = ln e + x = x x Therefore, 2e2x + 1 2x ln e + x lim+ ln y = lim+ = lim+ e + x = 3. x 1 x→0 x→0 x→0 2x Hence, lim+ e2x + x x→0 3. Compute Z = e3 . (cos x)3 1 + (sin x)1/2 dx. Z Z (cos x)3 1 + (sin x)1/2 dx = (cos x)2 1 + (sin x)1/2 cos x dx = Z Z 1/x 1 − (sin x)2 u = sin x, (1 − u2 )(1 + u1/2 ) du = Z 1 + (sin x)1/2 cos x dx = du = cos x dx, du dx = cos x 1 2 2 (1 + u1/2 − u2 − u5/2 ) du = u + u3/2 − u3 − u7/2 + C = 3 3 7 2 1 2 sin x + (sin x)3/2 − (sin x)3 − (sin x)7/2 + C. 3 3 7 4. Compute Z Z (cos 7x)4 dx. 4 (cos 7x) dx = Z 2 2 (cos 7x) (cos 7x) dx = 5 Z 1 1 (1 + cos 14x) · (1 + cos 14x) dx = 2 2 5. Compute Z Z 1 1 1 + 2 cos 14x + (1 + cos 28x) dx = 1 + 2 cos 14x + (cos 14x)2 dx = 4 2 1 1 1 1 x + sin 14x + (x + sin 28x) + C. 4 7 2 28 1 4 Z Z (sec 3x)5 tan 3x dx. 5 (sec 3x) tan 3x dx = 6. Compute Z 1 (sec 3x) (sec 3x tan 3x dx) = 3 4 u = sec 3x, du = 3 sec 3x tan 3x dx, (tan x)4 dx = Z (tan x)2 (tan x)2 dx = (tan x)2 (sec x)2 dx − Z (tan x)2 dx = Z Z Z u2 du − tan x + x + C = u4 du = Z (tan x)2 (sec x)2 − 1 dx = (tan x)2 (sec x)2 dx − Z (sec x)2 dx + du = (sec x)2 dx, dx = Z Z (sec x)2 − 1 dx = dx = du (sec x)2 1 1 3 u − tan x + x + C = (tan x)3 − tan x + x + C. 3 3 (csc 2x)3 (cot 2x)3 dx. Z Z Z (tan x)2 (sec x)2 dx − u = tan x, 7. Compute 1 1 5 u +C = (sec 3x)5 + C. 15 15 du dx = 3 sec 3x tan 3x Z (tan x)4 dx. Z Z Z 3 3 (csc 2x) (cot 2x) dx = Z (csc 2x)2 (cot 2x)2 (csc 2x cot 2x) dx = (csc 2x)2 (csc 2x)2 − 1 (csc 2x cot 2x) dx = u = csc 2x, Z u2 (u2 − 1)(csc 2x cot 2x) · du = −2 csc 2x cot 2x du −2 csc 2x cot 2x Z Z 1 1 1 1 1 1 1 5 1 3 5 3 2 2 4 2 − u − u +C = − (csc 2x) − (csc 2x) + C. u (u − 1) du = − (u − u ) du = − 2 2 2 5 3 2 5 3 8. Compute du = −2 csc 2x cot 2x dx, dx = Z p x2 − 1 dx. Z p Z p Z Z p 2 2 2 x − 1 dx = (sec θ) − 1 sec θ tan θ dθ = (tan θ) sec θ tan θ dθ = sec θ(tan θ)2 dθ = 6 x x = sec θ, x 2- 1 dx = sec θ tan θ dθ q 1 Z sec θ (sec θ)2 − 1 dθ = Z 1 1 (sec θ)3 − sec θ dθ = sec θ tan θ + ln | sec θ +tan θ|−ln | sec θ +tan θ|+C = 2 2 p 1 1 1 1 p sec θ tan θ − ln | sec θ + tan θ| + C = x x2 − 1 − ln |x + x2 − 1| + C. 2 2 2 2 9. Compute Z ln(x2 + 5) dx. Z d dx + ln(x2 + 5) Z ln(x2 + 5) dx = x ln(x2 + 5) − 1 ց 2x +5 − x x2 Z dx 2x2 dx = x ln(x2 + 5) − 2 x +5 Z 2− 10 x2 + 5 dx = x 10 x ln(x2 + 5) − 2x + √ tan−1 √ + C. 5 5 The second equality comes from dividing 2x2 by x2 + 5 (long division). Alternatively, you can do this: 2x2 2x2 + 10 − 10 2x2 + 10 10 2(x2 + 5) 10 10 = = − = − 2 =2− 2 . x2 + 5 x2 + 5 x2 + 5 x2 + 5 x2 + 5 x +5 x +5 10. Compute Z Z x2 p 25 − x2 dx. Z Z p p p 2 2 2 x 25 − x dx = 25(sin θ) 25 − 25(sin θ) (5 cos θ) dθ = 25(sin θ)2 25(cos θ)2 (5 cos θ) dθ = 2 5 x = 5 sin θ, x dx = 5 cos θ dθ q 25 - x 2 Z 1 625 1 (1 − cos 2θ) · (1 + cos 2θ) dθ = 1 − (cos 2θ)2 dθ = 2 2 4 Z Z 1 625 1 625 625 (1 − cos 4θ) dθ = (θ − sin 4θ) + C = (sin 2θ)2 dθ = 4 4 2 8 4 625 625 x 1 p 25 − x2 (25 − 2x2 ) + C. θ − sin θ cos θ 2(cos θ)2 − 1 + C = arcsin − x 8 8 5 8 625 Z (sin θ)2 (cos θ)2 dθ = 625 Z 7 11. Compute Z Z p x 25 − x2 dx. Z Z p √ 1 1 1 du 2 x 25 − x dx = x u · =− u1/2 du = − u3/2 + C = − (25 − x2 )3/2 + C. −2x 2 3 3 u = 25 − x2 , 12. Compute Z Z du = −2x dx, du dx = −2x x2 √ dx. x2 + 1 x2 √ dx = x2 + 1 Z (tan θ)2 p (sec θ)2 dθ = (tan θ)2 + 1 x = tan θ, Z (tan θ)2 p (sec θ)2 dθ = (sec θ)2 x2 + 1 dx = (sec θ)2 dθ Z (tan θ)2 (sec θ)2 dθ = sec θ x q 1 Z sec θ(tan θ)2 dθ = Z sec θ (sec θ)2 − 1 dθ = Z (sec θ)3 − sec θ dθ = p 1 1 p 1 1 sec θ tan θ − ln | sec θ + tan θ| + C = x x2 + 1 − ln | x2 + 1 + x| + C. 2 2 2 2 13. Compute Z 3 + 4x + 5x2 + 3x3 dx. x2 (x + 3) The top and the bottom both have degree 3, so I must divide the top by the bottom: 3 + 4x + 5x2 + 3x3 3 + 4x − 4x2 =3+ . 2 x (x + 3) x2 (x + 3) I’ll put the 3 aside for now, and work on the fraction: C A B 3 + 4x − 4x2 = + 2+ . 2 x (x + 3) x x x+3 Clear denominators: 3 + 4x − 4x2 = Ax(x + 3) + B(x + 3) + Cx2 . Set x = 0: I get 3 = 3B, so B = 1. Set x = −3: I get −45 = 9C, so C = −5. Plug B and C back in: 3 + 4x − 4x2 = Ax(x + 3) + (x + 3) − 5x2 . Differentiate: 4 − 8x = A(x + 3) + Ax + 1 − 10x. 8 Set x = 0: I 4 = 3A + 1, so A = 1. Therefore, 3 + 4x − 4x2 5 1 1 = + 2− . x2 (x + 3) x x x+3 Hence, 3 + 4x + 5x2 + 3x3 1 1 5 = 3+ + 2 − . x2 (x + 3) x x x+3 Finally, Z Z 3 + 4x + 5x2 + 3x3 1 1 5 1 3 + dx = 3x + ln |x| − − 5 ln |x + 3| + C. − dx = + x2 (x + 3) x x2 x+3 x 14. Compute Z x3 e4x dx. Z d dx + x3 − 3x + − 2 6x 6 dx e4x ց ց ց ց 1 4x e 4 1 4x e 16 1 4x e 64 1 4x e 256 Z 1 3 6 6 4x x3 e4x dx = x3 e4x − x2 e4x + xe4x − e + C. 4 16 64 256 + 15. Compute Z 0 e4x cos 2x dx. Z d dx + − e4x cos 2x −2 sin 2x ց ց + −4 cos 2x → Z dx 1 4x e 4 1 4x e 16 Z 1 4x 1 4x 1 e cos 2x dx = e cos 2x + e sin 2x − e4x cos 2x dx, 4 8 4 Z 1 1 5 e4x cos 2x dx = e4x cos 2x + e4x sin 2x, 4 4 8 Z 1 1 e4x cos 2x dx = e4x cos 2x + e4x sin 2x + C. 5 10 4x 9 16. Compute Z cos 3x sin 2x dx. Z d dx + − cos 3x −3 sin 3x sin 2x ց 1 − cos 2x 2 ց 1 − sin 2x 4 + −9 cos 3x → Z 17. Compute Z dx Z 3 9 1 cos 3x sin 2x dx, cos 3x sin 2x dx = − cos 3x cos 2x − sin 3x sin 2x + 2 4 4 Z 3 1 5 cos 3x sin 2x dx = − cos 3x cos 2x − sin 3x sin 2x, − 4 2 4 Z 3 2 cos 3x sin 2x dx = cos 3x cos 2x + sin 3x sin 2x + C. 5 5 dx dx. x1/2 (x1/3 + x1/4 ) Since the least common multiple of 2, 3, and 4 is 12, I’ll let x = u12 : Z dx dx = x1/2 (x1/3 + x1/4 ) 12u11 du = 12 u6 (u4 + u3 ) Z u2 du = 12 u+1 Z Z u−1+ 1 u+1 du = x = u12 , dx = 12u11 du 1 1/6 1 2 u − u + ln |u + 1| + C = 12 x − x1/12 + ln |x1/12 + 1| + C. 12 2 2 18. Compute Since Z x2 x−2 dx. − 8x + 25 1 · (−8) = −4 and (−4)2 = 16, I have 2 x2 − 8x + 25 = x2 − 8x + 16 + 9 = (x − 4)2 + 9. Therefore, Z x−2 dx = x2 − 8x + 25 Z x−2 dx = (x − 4)2 + 9 [u = x − 4, Z u du + u2 + 9 Z Z du = dx; (u + 4) − 2 du = u2 + 9 Z u+2 du = u2 + 9 x = u + 4] 2 1 2 u 1 2 x−4 du = ln |u2 + 9| + tan−1 + C = ln |(x − 4)2 + 9| + tan−1 + C. u2 + 9 2 3 3 2 3 3 I did the first part of the u-integral using the substitution w = u2 + 9. 10 19. How would you try to decompose 2(x − 2)2 using partial fractions? x3 (x2 + 4)2 2(x − 2)2 A C Dx + E B Fx + G = + 2+ 3+ 2 . + 2 x3 (x2 + 4)2 x x x x +4 (x + 4)2 20. Why do you try the partial fractions decomposition C A B 5x + = + (x − 1)2 (x + 1) x − 1 (x − 1)2 x+1 rather than the decomposition 5x B A + = ? (x − 1)2 (x + 1) (x − 1)2 x+1 Partial fractions is the opposite of combining fractions over a common denominator. In this case, the 5x ?” Both of the decompositions above could question is: “What fractions would add up to (x − 1)2 (x + 1) occur, since both have (x − 1)2 (x + 1) as the common denominator. However, since you don’t know beforehand what the fractions are, you must assume the “worst case” A — namely, that there might be an term. x−1 21. What is wrong with the following “partial fractions decomposition”? A B C 7 = + + . x(x − 1) x x x−1 D The first two terms could be combined into a single term , so they’re redundant. There is no reason x to list the same denominator twice. 22. Find the partial fractions decomposition of −3x4 + x3 − 6x2 − 3 . x(x2 + 1)2 Try the decomposition A Bx + C −3x4 + x3 − 6x2 − 3 Dx + E = + 2 . + 2 x(x2 + 1)2 x x +1 (x + 1)2 Clear denominators: −3x4 + x3 − 6x2 − 3 = A(x2 + 1)2 + (Bx + C)(x)(x2 + 1) + (Dx + E)(x). Set x = 0: I get A = −3. Plug it back in: −3x4 + x3 − 6x2 − 3 = −3(x2 + 1)2 + (Bx + C)(x)(x2 + 1) + (Dx + E)(x). 11 Differentiate: 12x3 + 3x2 − 12x = −12x(x2 + 1) + B(x3 + x) + (Bx + C)(3x2 + 1) + 2Dx + E. Set x = 0: I get C + E = 0. Differentiate again: −36x2 + 6x − 12 = −36x2 − 12 + B(3x2 + 1) + B(3x2 + 1) + (Bx + C)(6x) + 2D. Set x = 0: I get B + D = 0. Cancel the −36x2 and −12 terms in the previous equation, then differentiate: 6x = B(3x2 + 1) + B(3x2 + 1) + (Bx + C)(6x) + 2D, 6 = 6Bx + 6Bx + 6Bx + (Bx + C)(6). Set x = 0: I get C = 1. Since C + E = 0, it follows that E = −1. Plug C = 1 back in, then simplify the equation: 6 = 24Bx + 6, or 0 = 24Bx. Set x = 1: I get B = 0. But B + D = 0, so D = 0. Hence, −3x4 + x3 − 6x2 − 3 3 1 1 =− + 2 . − x(x2 + 1)2 x x + 1 (x2 + 1)2 23. (a) Compute Z −x2 + 8x − 4 dx. x(x2 + x − 2) x(x2 + x − 2) = x(x − 1)(x + 2), so I try A B C −x2 + 8x − 4 = + + . 2 x(x + x − 2) x x−1 x+2 Clear denominators: −x2 + 8x − 4 = A(x − 1)(x + 2) + Bx(x + 2) + Cx(x − 1). Set x = 0: I get −4 = −2A, or A = 2. Set x = 1: I get 3 = 3B, or B = 1. Set x = −2: I get −24 = 6C, or C = −4. Therefore, Z Z −x2 + 8x − 4 2 1 4 dx = 2 ln |x| + ln |x − 1| − 4 ln |x + 2| + C. dx = + − x(x2 + x − 2) x x−1 x+2 (b) If you use the antiderivative in (a) to compute Z 1/2 −1 −x2 + 8x − 4 dx, x(x2 + x − 2) you get 1/2 [2 ln |x| + ln |x − 1| − 4 ln |x + 2|]−1 = 1 1 2 ln + ln − 4 ln 32 − (2 ln 1 + ln 2 − 4 ln 1) ≈ −4.39445. 2 2 12 Does this computation make sense? Why or why not? The computation is incorrect, because the antiderivative is valid only within intervals which don’t 1 contain the singularities at x = −2, x = 0, and x = 1. The interval −1 ≤ x ≤ includes the singularity at 2 x = 0. It is not legal to simply “plug in the endpoints” — to do this definite integral correctly, you should set it up as two improper integrals. 24. Find the area of the region under y = (x2 x from x = 0 to ∞. + 1)2 y= x (x 2+ 1)2 The area is A= Z ∞ 0 x dx = lim 2 c→∞ (x + 1)2 Z c 0 c x 1 1 1 1 dx = lim − lim − 1 = . = − 2 2 2 2 c→∞ (x + 1) 2(x + 1) 0 2 c→∞ c + 1 2 Here’s the work for the antiderivative: Z Z Z x x du du 1 1 1 dx = · =− = +C =− + C. 2 2 2 2 2 (x + 1) u 2x 2 u 2u 2(x + 1) u = x2 + 1, 25. Compute Z du = 2x dx, du dx = 2x ∞ xe−3x dx. 0 Z ∞ xe−3x dx = lim b→+∞ 0 Z b 1 1 − xe−3x − e−3x = b→+∞ 3 9 0 b xe−3x dx = lim 0 1 1 1 1 1 = −0 − 0 + = . − be−3b − e−3b + b→+∞ 3 9 9 9 9 lim Here’s the work for the two limits: lim e−3b = lim b→+∞ b→+∞ lim be−3b = lim b→+∞ b→+∞ 1 = 0, e3b b 1 = lim = 0. b→+∞ 3e3b e3b I used L’Hôpital’s Rule to compute the second limit. 13 Here’s the work for the antiderivative: d dx Z x e−3x + Z 26. Compute Z 11 √ 3 2 − 1 + 0 ց ց dx 1 − e−3x 3 1 −3x e 9 1 1 xe−3x dx = − xe−3x − e−3x + C. 3 9 1 dx. x−3 Z 11 √ 3 2 1 dx = x−3 Z 2 3 √ 3 1 dx + x−3 Z 11 3 √ 3 1 dx. x−3 The first integral is 3 Z 2 1 √ dx = lim 3 a→3− x−3 a Z 2 a 3 1 3 3 2/3 2/3 √ dx = lim (x − 3) lim (a − 3) − 1 =− . = 3 a→3− a→3− 2 2 2 x−3 2 The second integral is Z 3 11 1 √ dx = lim 3 b→3+ x−3 Z b 11 11 3 3 1 2/3 2/3 √ 4 − (b − 3) = 6. (x − 3) lim = dx = lim 3 b→3+ 2 2 b→3+ x−3 b Therefore, Z 2 11 √ 3 1 9 3 dx = − + 6 = . 2 2 x−3 y =3 1 x-3 1 has a vertical asymptote at x = 3, but the (signed) area on each side is finite. x−3 The negative area to the left of x = 3 partially cancels the positive area to the right of x = 3. Thus, the integral in this problem does not represent the actual area bounded by the graph, the x-axis, and the lines x = 2, x = 3, and x = 11. The graph of √ 3 27. Prove that Z ∞ 4 e−x dx converges. 0 14 4 The interval of integration is x ≥ 0. On this interval, x ≤ x4 , so −x ≥ −x4 , and e−x ≥ e−x . Therefore, Z 0 Now Z ∞ −x e 0 Since Z dx = lim b→∞ Z 0 b ∞ e−x dx ≥ ∞ 4 e−x dx. 0 b e−x dx = lim −e−x 0 = lim −e−b + 1 = −0 + 1 = 1. b→∞ ∞ e−x dx converges, (*) shows that 0 Z Z b→∞ ∞ 4 e−x dx converges as well. 0 Only a life lived for others is a life worthwhile. - Albert Einstein c 2008 by Bruce Ikenaga 15 (∗)
© Copyright 2026 Paperzz