x=47.19 mm Towards a Strontium Optical Lattice Clock N. Poli, A. Alberti, R. Drullinger, G. Ferrari, V. Ivanov, M. Prevedelli, M. Schioppo, F. Sorrentino, G.M. Tino LENS and Department of Physics, Istituto Nazionale Fisica Nucleare, Istituto Nazionale Fisica della Materia - CNR, Polo scientifico - University of Florence, 50019 Sesto Fiorentino, Italy www.lens.unifi.it/tinogroup/Sr/ Abstract Strontium atom We report on our progress toward the realization of an optical frequency standard referenced to strontium intercombination lines. While first frequency measurement of the weakly allowed 1S0 - 3P1 transition was done with saturation spectroscopy on a thermal beam, we are preparing the experimental setup for high resolution spectroscopy on ultracold atoms of the doubly-forbidden 1S0 - 3P0 line. Our current setup allows the capture more than 107 atoms at 1 mK in 500 ms in two stages of magneto-optical trapping. We also demonstrated the dipole trapping of ultracold strontium isotopes for accurate spectroscopy and collisional measurements. For high resolution spectroscopy of doubly forbidden transition we have also prepared a 698 nm ‘clock’ laser stabilized on high finesse symmetrically suspended cavity and an high power 813 nm light source for the optical lattice trap at the ‘magic’ wavelength. - Optical clock using narrow intercombination transitions 0-1 7p 1P 1 1 6p P 1 1 fast all-optical cooling dipole trapping degenerate Fermi & Bose gases 6 s S0 293 nm 110 kHz TD t Isat 460.86 1 mK 770 mK 5 ns 42mW/cm2 689.45 460 nK 180 nK 20 ms 3 mW/cm2 717nm 25MHz 6p 3P J 5p P 1 4d 1D 2 amax (m/s2) 495 103 78 3 2 1 497 nm 2.3 MHz 1.8mm 450Hz 2 1 0 671nm-4 1.5 10 Hz - Inertial sensors for measurements at micrometer scale 5d 3D J 707nm 679nm 1 2 1 0 6 s 3S 0 6.5mm 620Hz 461nm 461 32 MHz 3 4d D J 3 2 1 3 5p P J 698 nm87 1 mHz ( Sr) 1 S Sr Isotope Natural Abundance 88 Nuclear Spin I 0 87 9/2 7,0 % 86 0 9,8 % 84 0 0,56 % 82,6 % 689 nm 7.6 kHz 5 s 2 1S 0 Spectroscopy on ultranarrow Sr transition Tr 257 nm 240 kHz 0-0 0-2 - Physics of ultracold atoms l(nm) 1 P 1 D 3 3 S P 3 D Optical lattice clock 88 Sr-86Sr 1S0-3P1 intercombination lines - Trapping neutral atoms at “magic” wavelenght for 1S03 P0 transition (compensation of AC Stark Shift effect on ground and excited state) - Spectroscopy in Lamb-Dicke regime (no mechanical effect of the interrogating light on the atoms, Doppler, recoil effect, ... ) M. Takamoto et al., Nature 435, 321-324 (2005) Servo1 Detector ~ ECDL OI AOM1 PZT OI EOM RC QWP AOM2 Slave OI GPS referenced oscillator AOM3 - Sr - 86Sr isotope shift measurement : 163 817.4 (0.2) kHz [1] - Negligible effect due to higher order polarizability for 87Sr doubly forbidden transition (<10-18) 88 Servo2 Atomic beam spectroscopy Frequency comb : 434 829 121 311 (10) kHz [1] - Absolute frequency of 88Sr intercombination line -11 (relative accuracy 2*10 ) A.Brusch et al., Phys. Rev. Lett. 96, 103003 (2006) 86 - Absolute frequency of Sr intercombination line: 434 828 957 494 (10) kHz [1]. G. Ferrari et al., Phys. Rev. Lett. 91, 243002 (2003) 88 Sr-87Sr 1S0-3P0 doubly-forbidden transitions Compact high power 813 nm laser Spectrosocopy on ultra-narrow 1S0-3P0 intercombination transitions - multiple ground state sublevels - large sensitivity to magnetic fields (MHz/T) and lattice polarization (Hz/rad) Odd isotope (87Sr) - mHz natural linewidth transitions (hyperfine coupling, I=9/2) - direct spectroscopy - non-degenerate ground state - small magnetic field dependency - already demonstrated on Yb - Master oscillator (ECDL) + tapered amplifier - 600 mW single mode (813 nm) - 1D optical lattice at magic wavelength Even isotopes (88Sr, ...) - doubly forbidden (no hyperfine coupling, I=0) - new spectroscopy schemes (magnetic fieldinduced spectroscopy, EIT, four-wave mixing, ..) ECDL PMF to atoms Optical lattice clock goals - frequency stability sy(t) ~ 10-16 t-1/2 - accuracy ~ 10-17 -10-18 OI AOM OI P = 600 mW w0 = 30mm MOPA U0 = 30 mK G = 0.6 s-1 106 N= t=5s - 50% of output power coupled into the fiber - laser source mounted on a 50 cm * 50 cm optical breadboard A. V. Taichenachev et al., Phys. Rev. Lett. 96, 083001 (2006) Clock laser Horizontally symmetric suspended cavities Laser prestabilization The lasers to excite the forbiddentransitions are spectrally narrowed by phase and frequency stabilization onto passively isolated and high finess opticalcavities - Pound-Drever-Halllocking (~3 MHz BW) The reference cavity - ULE spacer (~ 10-9/K) (l. = 10 cm, f =10 cm) - SiO2 mirror (T ~ 3 ppm, finesse ~ 5 105) - horizontal symmetric mount (frequency response to accelerations ~ 15 mHz/mg) 689 nm laser source (1S0 - 3P1 transition Dn ~ 7 kHz) FEM simulations Spectral noise density (Hz2/Hz) - Simulation of cavity length changes and mirror tilt due to mechanical vibrations laser unlocked cavity lock cavity lock (damping on) atomic signal lock (<5 Hz bw) 10 10 109 108 107 106 105 104 103 102 101 100 10-1 10-2 -1 10 - Frequency noise spectra measured with a resonance mode of a second independent cavity. - Optimized geometry for the cavity suspension (T. Rosenband, J. Bergquist) - Laser linewidth (Dn ~ 20 Hz) 100 101 102 103 104 105 Frequency (Hz) 698 nm laser source (1S0 - 3P0 transition Dn < 1 mHz) Two step stabilization of698 nm ECDL on high finesse cavities - first step stabilizationon 104 finesse tunablecavity (Dn < 1 kHz) - second step stabilization on high finesse symmetrically suspended optical cavity (Dn < 1 kHz) Cooling and trapping Strontium atoms oven Measuring cavity sensitivity to vibrations -Measurement performed with two identical cavities placed on independent tables. First cavity used to pre-stabilize the laser, while the second is used as a test cavity. Blue MOT (1S0-1P1- 461 nm) - 100 ms capture - 5 ms blue molasses About 2*108 88Sr atoms at 2 mK - t ~ 100 ms Transverse cooling stage Red MOT (1S0-3P1- 689 nm) - Broad-band recapture (Dt~ 100 ms) - Single frequency MOT (Dt~ 10 ms) r g - Sensitivity measured both with single tone shaking (loudspeaker @ ~500 Hz) and with broadband vibration noise (noisefloor of the laboratory) Zeeman slower 7 88 Up to ~10 Sr atoms @ 1 mK 88 Dipole trapping (single isotopes, Sr mixtures) 86 Sr isotopic Trap region N. Poli et al. Phys. Rev. A 71, 061403(R) (2005) - Collisional properties of 88Sr and 86Sr samples and 88 Sr and 86Sr mixture 88 - Production of ultracold Sr samples (r = 0.1) G. Ferrari et al. Phys. Rev. A 73, 023408 (2006) Future prospect... - Optical frequency reference on Sr transitions - Compact and transportable experimental setup Financial support - Optical clocks for Earth and Space applications ASI CONTRACT 1/013/06/0 (2006) ESA CONTRACT 19838/06/F/VS (2006) ESA CONTRACT MAP (2006)
© Copyright 2026 Paperzz