Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2012 Supplementary information Preparation of electrochromic Prussian blue nanoparticles dispersible into various solvents for realisation of printed electronics Manabu Ishizaki,a Katsuhiko Kanaizuka, a Makiko Abe,a Yuji Hoshi,a Masatomi Sakamoto,a,b Tohru Kawamoto,b Hisashi Tanaka,b and Masato Kurihara*a,b An insoluble solid of historic Prussian blue (PB) has been transformed into dispersible PB nanoparticles in water and various hydrophilic and hydrophobic organic solvents. Via hybrid surface modification using Na4[FeII(CN)6] and short-chain alkylamines, the insoluble PB was successfully dispersed in hydrophilic-and-hydrophobic boundary alcohols, such as n-butanol. The n-butanol-dispersible PB nanoparticles afforded homogeneous spin-coated thin films on various substrates. The chemisorbed shorter-chain alkylamines, n-propylamines, of the PB nanoparticles were thermally released at 100 ○C from their surfaces to present stubborn electrochromic PB thin films adhering to the substrate via mutual (2 0 0) coordination-bonding networks. (6 2 0) (4 4 0) (6 0 0) (a) (4 2 2) (4 2 0) (4 0 0) Intensity / a.u. (2 2 0) Scherrer’s particle size : (a)10.5 nm (b)10.2 nm (b) 10 20 30 40 2θ / degree 50 60 Fig. S1. XRD patterns of the original PB (insoluble PB NP solid) (a), the water-dispersible PB NP solid using Na4[Fe(CN)6] (b). Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2012 H2O (a) (b) H2O H2O NH2 NH3 NH2 + NH3 N C OH- N C NC OH- + Fe NH NC3 FeII CN FeIII N - N N OH C C N N III NH2 + C FeII CN N C FeIII NC FeII CN C C N N C C C N Fig. S2. Two types of surface modification using Fe(III)-OH2 sites with alkylamines (R-NH2). absorbanc (a) (b) 1.5 1.0 0.5 0 350 550 750 950 1150 Wavelength / nm Fig S3. (a) UV-Vis-near IR absorption spectrum of the n-dodecylamine (C12-amine)-modified PB NPs almost independently dispersed in n-butanol (78 μg / mL), and (b) a photograph of the blue dispersion solution with high transparency. (a) (b) 200 nm 200 nm Fig. S4. AFM images of the spin-coated thin film using dilute (a) and dense (b) n-dodecylamine (C12-amine)-modified PB NP inks. Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2012 Alkylamine-modified PB NPs Scherrer’s particle size; 10.2 nm (i) (h) 9.6 nm (g) 9.3 nm 10.6 nm (f) (e) 9.9 nm (d) 11.1 nm (c) 10.5 nm (b) 10.0 nm (a) 10.5 nm 10 20 30 40 50 60 2θ / degree Fig. S5. Powder X-ray diffraction (XRD) patterns of (a) the original PB (insoluble PB NP solid), (b) n-propylamine-modified, (c) n-butylamine-modified, (d) n-hexylamine-modified, (e) n-octylamine-modified, (f) n-dodecylamine-modified, (g) n-hexadecylamine-modified, (h) n-octadecylamine-modified, (i) oleylamine-modified PB NP solids. The XRD patterns were recorded on Rigaku MiniFlex II desktop X-ray diffractometer (Cu Kα1 radiation (1.540562 Å)). The single-crystalline particle diameter (D) was calculated by the Scherrer’s equation: D = Kλ/βcosθ, where K = 0.9 (Scherrer’s constant), λ = wavelength of X-ray, β = half band width, and θ = peak angle. Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2012 Alkylamine-modified PB NPs CO2 CH stretching bands CN stretching band (h) (g) (f) (e) (d) (c) (b) (a) 3000 3000 2800 2800 2600 2600 2400 2200 2400 2200 Wavenumber / cm-1 2000 2000 1800 1800 Fig. S6. FT-IR spectra of (a) n-propylamine-modified, (b) n-butylamine-modified, (c) n-hexylamine-modified, (d) n-octylamine-modified, (e) n-dodecylamine-modified, (f) n-hexadecylamine-modified, (g) n-octadecylamine-modified, (h) oleylamine-modified PB NP solids. Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2012 Hybrid surface-modified PB NPs Scherrer’s particle size; 10.8 nm (i) (h) 10.6 nm (g) 10.3 nm (f) 9.7 nm (e) 10.4 nm (d) 10.6 nm 10.7 nm (c) 10.4 nm (b) 10.5 nm (a) 10 20 30 40 50 60 2θ / degree Fig. S7. Powder X-ray diffraction (XRD) patterns of (a) the original PB (insoluble PB NP solid), (b) n-propylamine-modified, (c) n-butylamine-modified, (d) n-hexylamine-modified, (e) n-octylamine-modified, (f) n-dodecylamine-modified, (g) n-hexadecylamine-modified, (h) n-octadecylamine-modified, (i) oleylamine-modified PB NP solids. The XRD patterns were recorded on Rigaku MiniFlex II desktop X-ray diffractometer (Cu Kα1 radiation (1.540562 Å)). The single-crystalline particle diameter (D) was calculated by the Scherrer’s equation: D = Kλ/βcosθ, where K = 0.9 (Scherrer’s constant), λ = wavelength of X-ray, β = half band width, and θ = peak angle. Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2012 Hybrid surface-modified PB NPs CO2 CH stretching bands CN stretching band (h) (g) (f) (e) (d) (c) (b) (a) 3000 3000 2800 2800 2600 2600 2400 2400 2200 2200 2000 2000 1800 1800 Wavenumber / cm-1 Fig. S8. FT-IR spectra of (a) n-propylamine-modified, (b) n-butylamine-modified, (c) n-hexylamine-modified, (d) n-octylamine-modified, (e) n-dodecylamine-modified, (f) n-hexadecylamine-modified, (g) n-octadecylamine-modified, (h) oleylamine-modified PB NP solids. Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2012 Eluted Apparently not eluted Apparently not eluted (a) (c) (b) n-butanol water Propylene carbonate Fig. S9. Photographs of the PB NP thin film after drying at room temperature in (a) water, (b) n-butanol, and (c) propylene carbonate. Eluted Eluted (a) Eluted (b) water Apparently not eluted (c) water (d) water water Fig. S10. Photographs of the PB NP thin film in water after heating (a) at 50℃ for 10 min, (b) at 80℃ for 10 min, (c) at 100℃ for 10 min, and (d) at 100℃ for 20 min. Electronic Supplementary Material (ESI) for Green Chemistry This journal is © The Royal Society of Chemistry 2012 0.4 (a) Absorbance 0.3 0.2 0.1 0 400 400 450 500 500 550 600 600 650 700 700 750 800 800 Wavelength / nm 0.4 (b) Absorbance 0.3 0.2 0.1 0 400 500 600 700 800 Wavelength / nm Fig. S10. Time-course change in the UV-vis absorption spectra of the PB NP film at -0.8 V (a) and 0.5 V (b) vs. Ag/Ag+.
© Copyright 2026 Paperzz