U UNPLUGGED VideoGamesand CoordinatePlanes Lessontime:30-60Minutes LESSONOVERVIEW Studentsdiscussthecomponentsoftheirfavoritevideogamesanddiscoverthattheycanbereducedtoaseries ofcoordinates.TheythenexplorecoordinatesinCartesianspace,identifyingthecoordinatesforthecharactersin agameatvariouspointsintime.Oncetheyarecomfortablewithcoordinates,theybrainstormtheirowngames andcreatesamplecoordinatelistsfordifferentpointsintimeintheirowngame. LESSONOBJECTIVES Studentswill: Createadatamodelthatdescribesasimplevideogame. Describethemovementsofvideogamecharactersbytheirchangeincoordinates. ANCHORSTANDARD CommonCoreMathStandards 6.NS.8:Solvereal-worldandmathematicalproblemsbygraphingpointsinallfourquadrantsofthecoordinate plane.Includeuseofcoordinatesandabsolutevaluetofinddistancesbetweenpointswiththesamefirst coordinateorthesamesecondcoordinate. Additionalstandardsalignmentcanbefoundattheendofthislesson TEACHINGSUMMARY GettingStarted 1)Vocabulary 2)LearningaLanguage Activity:VideoGamesandtheCoordinatePlane 3)ReverseEngineeraDemo 4)CoordinatePlanes Wrap-up 5)BrainstormingaGame TEACHINGGUIDE MATERIALS,RESOURCES,ANDPREP FortheStudent ReverseEngineeringTable(inthestudentworkbook) VideogameDesignTemplate(inthestudentworkbook) FortheTeacher Lessonslidedeck ExampleGame PrintedcutoutsoftheNinja,Dragon,andUnicorn GETTINGSTARTED 1)Vocabulary Thislessonhasthreenewandimportantwords: Apply-useagivenfunctiononsomeinputs ReverseEngineer-toextractknowledgeordesigninformationfromanexistingproduct Sprite-agraphiccharacteronthescreen.Sometimescalledabitmaporanimage. 2)LearningaLanguage WelcometoCode.orgCSinAlgebra!Inthiscourseyou’llbelearninganewprogramminglanguage-awaytotell computersexactlywhatyouwantthemtodo.JustlikeEnglish,SpanishorFrench,aprogramminglanguagehas itsownvocabularyandgrammarthatyou’llhavetolearn.Fortunately,thelanguageyou’llbeusingherehasalot incommonwiththesimplemaththatyoualreadyknow! Connectthismaterialwiththingsstudentsalreadyknow: Whatmakesalanguage? Doesanyonespeakasecond(orthird)language?Doyouspeakadifferentlanguagethanyour parents/grandparents? Aretherelanguagesthatsharefeatures,suchasacommonroot(Romance,Germanic)orasimilaralphabet (Latin,Cyrillic,Arabic,Kanji)? Aretherelanguagesthataredesignedforspecificpurposesorwithincertainconstraints(signlanguage, Esperanto)? Mathisalanguage,justlikeEnglish,Spanish,oranyotherlanguage! Weusenouns,like"bread","tomato","mustard"and"cheese"todescribephysicalobjects.Mathhasvalues, likethenumbers1,2or3,todescribequantities. Wealsouseverbslike"toast","slice","spread"and"melt"todescribeoperationsonthesenouns. Mathematicshasfunctionslikeadditionandsubtraction,whichareoperationsperformedonnumbers. Justasyoucan"slicepieceofbread",apersoncanalso"addfourandfive". Amathematicalexpressionislikeasentence:it’saninstructionfordoingsomething.Theexpression4+5tellsus toadd4and5.Toevaluateanexpression,wefollowtheinstructionsintheexpression.Theexpression4+5 evaluatesto9. ACTIVITIES: 3)ReverseEngineeraDemo Let’sbeginbyexploringasimplevideogame,andthenfiguringouthowitworks.Openthislinktoplaythegame, andspendaminuteortwoexploringit.Youcanusethearrowkeystomovetheupanddown-trytocatchthe unicornandavoidthedragon! Thisgameismadeupofcharacters,eachofwhichhasitsownbehavior.Theunicornmovesfromthelefttothe right,whilethedragonmovesintheoppositedirection.Theninjaonlymoveswhenyouhitthearrowkeys,and canmoveupanddown.Wecanfigureouthowthegameworksbyfirstunderstandinghoweachcharacterworks. Directions: 1)Dividestudentsintogroupsof2-4. 2)Provideeachstudentwithacopyofthereverse-engineeringtable. 3)Asstudentsdemothegame,askthemtofillinthe"Thinginthegame..."columnwitheveryobject theyseeinthegame. 4)Discusswiththewholegroupwhichthingstheycameupwith.Characters?Background?Score? 5)Next,foreachofthethingsinthegame,fillinthecolumndescribingwhatchanges.Size? Movement?Value? 6)Askstudentstosharebackwiththewholegroup.Notehowstudentsdescribedchanges-how detailedwerethey?Whatwordsdidtheyusetodescribemovement? 4)CoordinatePlanes Computersusenumberstorepresentacharacter’spositiononscreen,using numberlinesasrulerstomeasurethedistancefromthebottom-leftcornerofthe screen.Forourvideogame,wewillplacethenumberlinesothatthescreenruns from0(ontheleft)to400(ontheright).WecantaketheimageoftheDragon,stickit anywhereontheline,andmeasurethedistancebacktothelefthandedge.Anyone elsewhoknowsaboutournumberlinewillbeabletoduplicatetheexactpositionof theDragon,knowingonlythenumber.WhatisthecoordinateoftheDragonontherighthandsideofthescreen? Thecenter?WhatcoordinatewouldplacetheDragonbeyondthelefthandedgeofthescreen? LESSONTIP Thekeypointforstudentshereisprecisionandobjectivity.Therearemanypossiblecorrect answers,butstudentsshouldunderstandwhyanysolutionshouldbeaccurateandunambiguous. Thisrequiresstudentstoproposesolutionsthatshareacommon"zero"(thestartingpointoftheir numberline)anddirection(literally,thedirectionfromwhichacharacter’spositionismeasured). Byaddingasecondnumberline,wecanlocateacharacteranywhereonthescreen ineitherdimension.Thefirstlineiscalledthex-axis,whichrunsfromlefttoright.The secondline,whichrunsupanddown,iscalledthey-axis.A2-dimensionalcoordinate consistsofboththex-andy-locationsontheaxes.Supposewewantedtolocatethe Ninja’spositiononthescreen.Wecanfindthex-coordinatebydroppingalinedown fromtheNinjaandreadthepositiononthenumberline.They-coordinateisfoundby runningalinetothey-axis. Acoordinaterepresentsasinglepoint,andanimageis(bydefinition)manypoints. Somestudentswillaskwhetheracharacter’scoordinatereferstothecenterofthe image,oroneofthecorners.Inthisparticularprogram,thecenterservesasthecoordinate-butotherprograms mayuseanotherlocation.Theimportantpointindiscussionwithstudentsisthatthereisflexibilityhere,aslongas theconventionisusedconsistently. Whenwewritedownthesecoordinates,wealwaysputthexbeforethey(justlikeinthealphabet!).Mostofthe time,you’llseecoordinateswrittenlikethis:(200,50)meaningthatthex-coordinateis200andthey-coordinateis 50. Dependingonhowacharactermoves,theirpositionmightchangeonlyalongthex-axis,onlyalongthey-axis,or both.Lookbacktothetableyoumade.CantheNinjamoveupanddowninthegame?Canhemoveleftand right?Sowhat’schanging:hisx-coordinate,hisy-coordinate,orboth?Whatabouttheclouds?Dotheymoveup anddown?Leftandright?Both? OPTIONALACTIVITY:Dependingontimingandthebackgroundofyourstudents,havingonestudentplacea characteronalargegraphandanotherstudentstatingthecoordinatesisexcellentpractice.Studentsoftenneed extrapracticerememberingwhichcoordinatecomesfirst.Coordinatesdonothavetobeexactbuttheyshouldbe inthecorrectorder.Extendingthistoallfourquadrantstoincludenegativenumbersisalsoexcellentpractice. Fillintherestofthereverse-engineeringtable,identifyingwhatischangingforeachofyourcharacters. WRAP-UP 5)BrainstormingforaGame Usethegameplanningtemplatetomakeyourowngame.JustlikewemadealistofeverythingintheNinja game,we’regoingtostartwithalistofeverythinginyourgame.Tostart,yourgamewillhavefourthingsinit: ABackground,suchasaforest,acity,space,etc. APlayer,whocanmovewhentheuserhitsakey. ATarget,whichfliesfromtherighttotheleft,andgivestheplayerpointsforhittingit. ADanger,whichfliesfromtherighttotheleft,whichtheplayermustavoid. LESSONTIP Thestructureofyourstudents'gameswillverycloselyresemblethedemothey'vejustplayed.Many studentswillwanttoreachforthestarsanddesignthenextHalo.Remindthemthatmajorgameslike thattakemassiveteamsmanyyearstobuild.Someofthemostfunandenduringgamesarebuilton verysimplemechanics(thinkPacman,Tetris,orevenFlappyBird). Derivedfrom ThiscurriculumisavailableunderaCreativeCommonsLicense(CCBY-NC-SA4.0) IfyouareinterestedinlicensingCode.orgmaterialsforcommercialpurposes,contactus:https://code.org/contact
© Copyright 2026 Paperzz