SOME PROPERTIES ASSOCIATED WITH SQUARE FIBONACCI NUMBERS J O H N H. HALTON Brookhaven National Laboratory f Upton,, Long Island, New York 1. INTRODUCTION In 1963, both M o s e r and C a r l i t z [ 1 1 ] and Rollett [ 1 2 ] p o s e d a p r o b l e m . Conjecture 1, F 0 = 0, The only s q u a r e Fibonacci n u m b e r s a r e F_i = F i = F 2 = 1, and F l 2 = 144 . Wunderlich [ 1 4 ] showed, by an ingenious computational method, that for 3 < m < 1000008, the only s q u a r e F is F 1 2 ; and the c o n j e c t u r e w a s p r o v e d analytic ally by Cohn [ 5 , 6, 7 ] , B u r r [ 2 ] , and Wyler [ 1 5 ] ; while a s i m i l a r r e sult for L u c a s n u m b e r s w a s obtained by Cohn [ 6 ] and B r o t h e r Alfred [1]„ Closely a s s o c i a t e d with Conjecture 1 is Conjecture 2. When p is p r i m e , the s m a l l e s t F i b o n a c c i n u m b e r d i v i s - ible by p is not divisible by p2„ It is known (mostly from Wunderlich ? s computation) that Conjecture 2 holds for the f i r s t 3140 p r i m e s 514229* (p < 28837) and for p = 135721, 141961, and C l e a r l y , Conjecture 2, t o g e t h e r with C a r m i c h a e P s t h e o r e m (see [ 4 ] , T h e o r e m XXIII, and [ 9 ] , T h e o r e m 6), which a s s e r t s that, if m ^ 0, with the exception of m = 1, 2, 6, and 12, that F m for each F there is a p r i m e p, such i s the s m a l l e s t Fibonacci n u m b e r divisible by p (whence F i s not J ^ m divisible by p 2 and so cannot be a s q u a r e , if Conjecture 2 holds), Conjecture 1; but not v i c e v e r s a , implies If Conjecture 2 h o l d s , then the divisibility s e q u e n c e t h e o r e m ( [ 9 ] , T h e o r e m 1) can b e s t r e n g t h e n e d to say that, if p an odd p r i m e and n ^ 1, (1) <*(p,n) = p or(p) . In the notation of [ 9 ] , Conjecture 2 for a given p r i m e p s t a t e s F , v i s not divisible by *This work performed Commission. is then p2, T h i s , by L e m m a 8 and T h e o r e m 1 of [ 9 ] , under the a u s p i c e s of the U. S„ Atomic that is Energy The p r e s e n t p a p e r i s a r e v i s e d v e r s i o n of a r e p o r t w r i t t e n u n d e r a u s p i c e s of t h e U. 3* AEC w h i l e t h e a u t h o r . w a s a t Brookhaven N a t i o n a l L a b o r a t o r y , Upton 9 L . ' I . , N . Y. ( R e p o r t N©eAMD/38^ BNL9300). 347 348 SOME P R O P E R T I E S ASSOCIATED [Nov. equivalent to a(p2) (2) = pa(p) o Since v.(p) i s the highest power of p dividing F . ,, (3) v(p) By L e m m a 11 of [ 9 ] , namely F>^, <*(p), 1. p divides one and only one of F where T h u s , if p > 5, = this is equivalent to: \(p) = p - (5/p) and (5/p) s i n c e \(p) i s not d i v i s i b l e , b y p , , F , and F , is the L e g e n d r e index,, while it is divisible by (2) is equivalent to (4) F , v i s not divisible by p 2 , and inspection of the c a s e s p = 2, 3, and 5, shows that the equivalence holds for t h e s e p r i m e s a l s o . Finally, (4) i s equivalent to: F F ,, i s not divisible by p2 J p - l p+l * (5) T h i s p a p e r p r e s e n t s c e r t a i n r e s u l t s obtained in the c o u r s e of investigating the two C o n j e c t u r e s , the l a t t e r of which i s s t i l l in doubt* 2. A THEOREM OF M. WARD We begin with a t h e o r e m posed as a p r o b l e m (published posthumously) by Ward [ 13]. A different proof from that givenbelow w a s obtained independently by C a r l i t z [ 3 ] . T h e o r e m A„ (6) Let <fc&) = £ s=i and xS/s 1967] WITH SQUARE FIBONACCI NUMBERS 349 k (x) = (xP" 1 - l ) / p ; (7) then, for any p r i m e n u m b e r p — 5, p 2 divides the s m a l l e s t Fibonacci n u m - b e r divisible by p if and only if (8) c ^ ) Proof, (|) = 2 k p ( I ) (mod p) . We shall show that (8) is t r u e if and only if (5) is false Q We shall u s e the congruence (see [ 1 0 ] , page 105) that, when 1 — t — p - 1, K') (9) -If) = (-Dt 1 (modp) and F e r m a t T s t h e o r e m (see [ 1 0 ] , p a g e 63), that (10) if (a,p) - 1, ap-1 = 1 (mod p ) T h e identities (ID F 2 •.-^IHTff )"! = (12) <14> F^i ^ = F^ + F ^ + (-l)n = F n _ i r n + 1 . . and (15) v ' 3F2 + 2 ( - l ) n = F2 + F2 n n-l n+l , a r e well known (see [ 8 ] , equations (3), (5), (64), (65), (67), and (95) with m = l)o F r o m then it follows that (since (1 ±V5) 2 = 2(3 ± V5) ) 350 SOME P R O P E R T I E S ASSOCIATED [Nov9 ,T\"2Q il6) =F4n/F2n = F f f i . i + F 2 n + 1 = 2F2 + F ^ = 5F^ + 2(-l)n = 5 F n _ 1 F n + 1 - 3(-l)n Now, s i n c e (7), p > 5, p F ^ . is odd and -£(p - 1) i s an i n t e g e r . the factor £ = 6 p [ | ( p - 1)] I and k (3/2) into i n t e g e r s . + By (6) is p r i m e to p and m a k e s both T h u s , modulo p , fa. and v(5/9) by (6), (9), (16), (7), and '(10), -i|(t) P < 5 v.v. + 3 >- 2 } = -5"1P[S(P " Ifl'•V . V> /P) + ' (^)P"' ' 2kf • ' • 2kp (l) - S < V V / P ) ' w h e r e f and g a r e i n t e g e r s p r i m e to p , It follows that (8) is t r u e if and only if (F and F F +1 F /p is an integer. /p) = 0 (mod p), and this c o n t r a d i c t s (5), proving the theorem,, 3. ANOTHER CONJECTURE We end the p a p e r with an examination of a conjecture, which i m p l i e s the f i r s t conjecture (known now to b e t r u e ) , in a r a t h e r different way from Conj e c t u r e 2. T h e underlying r e s u l t i s T h e o r e m Bo i n t e g e r M, Let p be a p r i m e , and suppose that t h e r e e x i s t s a p o s i t i v e such that (i) for no i n t e g e r n, p r i m e to p and g r e a t e r than M, is o r p t i m e s a s q u a r e ; and F a square 1967] WITH SQUARE FIBONACCI NUMBERS (ii) if n i s p o s i t i v e and not g r e a t e r than N, t i m e s a s q u a r e , then F, Proof. is a square or Suppose that (i) and (ii) hold, and that F J D divides Let m = p m i , * l A and A is 2 . M* = AB C , Then, b y (i), = BC 2 D, F m 1 or p. t i m e s a s q u a r e , and divisible by F 2 and w r i t e F > is a square or p In contradiction of the t h e o r e m , l e t m > M. m i s divisible by p« p such that k / n i s a power of p; at all i s a s q u a r e o r p t i m e s a s q u a r e for m times a square. where and F i s n e i t h e r a s q u a r e n o r p t i m e s a s q u a r e , when k is the l e a s t i n t e g e r g r e a t e r than M, then no F 351 mj This makes F a square or p Now, by the well-known identity (see [8, equation (35)], o r [9]* equation (8)] ) (17) F F m mj = y ( P ) F h " 1 F p " h F, X*. I h i m i m i - l h w e get that B(A/D) = BC*D V (A F h ' 2 F P ~ \ Fh + pF*5"1 A^ I h i Also, mi mi-i h mi-l ^ mi- (F y - 1, F ) = 1, so B m u s t divide p;? that i s , B i s 1 o r p; mi mi ^ ^' and again D i s 1 o r p . It follows that F , too, i s a s q u a r e o r p t i m e s J, 1 a square. Arguing s i m i l a r l y , we s e e that, if m = p m , then F is a s q u a r e o r p t i m e s a square,, T h i s will continue until (m ,p) = 1, and then, S t < M. But then, b y (ii), if p m = m . i s the l e a s t such n u m - by (i) 1 ^ m S " S b e r g r e a t e r than M, square,, s ^ t, and F m S —L cannot be a s q u a r e o r p t i m e s a T h i s c o n t r a d i c t i o n shows the c o r r e c t n e s s of t h e t h e o r e m . Conjecture 3. T h e r e is no odd i n t e g e r m > 12, such that F is a s q u a r e o r twice a square,, T h e o r e m C Conjecture 3 i m p l i e s Conjecture 1. Proof. M = 12. Conjecture 3 s t a t e s condition (i) of T h e o r e m B, when p = 2 and T h e only F , squares are Fj = F2 = ls c o r r e s p o n d i n g F, with 1 < m < 12, F 3 = 2, a r e F i 6 = 3° 7°47 is a s q u a r e o r twice a s q u a r e . F 6 = 8, which a r e s q u a r e s o r twice and F 1 2 = 144. 5 However, the 2 and F24 = 2 • 3 • 7 • 2 3 , and n e i t h e r Thus (ii) holds also, whence the conclusion of T h e o r e m B , which includes Conjecture 1, i s es tablished. 352 SOME PROBLEMS ASSOCIATED 4. [Nov. PYTHAGOREAN RELATIONS We c l o s e this p a p e r by a r a t h e r c l o s e r examination of Conjecture 3, using the identities (12) and (13), with the well-known r e s u l t , that the r e l a t i o n x2 + y2 = z2 (18) holds between i n t e g e r s if and only if t h e r e a r e i n t e g e r s p r i m e and of different p a r i t i e s , and an i n t e g e r u, x = (s 2 - t 2 ) u , (19) y = 2stu, s and t, mutually such that z = (s 2 + t 2 )u . and Conjecture 3 l e a d s us to e x a m i n e the p r o p e r t i e s of F i b o n a c c i n u m b e r s F , which a r e s q u a r e s or twice s q u a r e s , for odd i n t e g e r s m. We obtain the following r a t h e r r e m a r k a b l e r e s u l t s . T h e o r e m D, i n t e g e r s r , s, even, If m i s odd, and t, (s, t) = 1, (20) F i s a s q u a r e if and only if t h e r e such that m = 12r ± 1 , s i s odd, t is and F 6 r ± 1 = s 2 - t2 . F 6 r = 2st, Proof, s > t ^ 0, are Since m is odd, put m = 4n ± 1, determining n uniquely. Then, by (12), (21) F Thus F = F 4 n ± 1 = F^n + F2n±i . i s a s q u a r e if and only if F ^ , ean t r i p l e t . 2st, m Since ( F 2 n , F 2 n ±i) = 1» u = 1, while F ^ i 2 ) = 1, a ^ d A/F~~ f o r m a P y t h a g o r - and this p a i r is 2 2 = . ( s ± t ) » T h i s gives that s and t and of different p a r i t i e s , with s ^ t > 0. (F , F F2n±i» and a r e mutually p r i m e By (12), F ^ i = F2 + F2 . Since not both n u m b e r s a r e even, whence F 2 n : ti is e i t h e r odd o r the s u m of two odd s q u a r e s , which m u s t be of the f o r m divisible by 4, it follows that (22) (s 2 - t 2 ) F 2 n = 2st, Fm±1 = s 2 - t2 . 8k + 2. Since 2st is 1967] A l s o , by (13), WITH SQUARE FIBONACCI NUMBERS 353 2st - F ^ F ^ + F n + 1 ) = F ^ F ^ + F n ) . Since this m u s t b e divisible'by 4, and (F , 2 F n _ + F ) = ( F , 2 ) , = 3r F m u s t be even, so that n (since F 3 = 2); whence m = 12r ± 1, a s s t a t e d in the t h e o r e m , and (22) b e c o m e s (20). s 2 - t2 = F 2 + F 2 _ Finally, s u m of an odd and an even s q u a r e . i s of the f o r m 4k + 1, being the T h u s s m u s t be odd and t even, a s was asserted. Since Conjecture 1 i s valid, i t follows f r o m T h e o r e m D that, if r ^ 2, the equations (20) a r e not satisfied by any i n t e g e r s T h e o r e m E„ If m i s odd, a r e i n t e g e r s r , s, both odd, and t, (s, t) = 1, F r , s, and 6. i s twice a s q u a r e if and only if t h e r e such that m = 12r ± 3 , s ^ t > 0 , s and t a r e and F 6 r = s 2 - t2, F 6 r ± 3 = 2 s t . (23) P r o of. b y (21), Fm We p r o c e e d much a s for T h e o r e m De Let m = 4n + l a Then, and F 2 n ± i m u s t both be odd (since they cannot both be even), so that F 2 n ± i i s even (since one out of e v e r y consecutive t r i p l e t of Fibonacci n u m b e r s , one i s even, and i t s index i s a multiple of 3). Thus 2n ± 1 = 6r ± 3 , whence m = 12r ± 3, a s s t a t e d in the t h e o r e m . s i n c e 2n = 6r ± 2 and 2n ± 1 = 6r ± 1, F (24) 6r+2 + F 6r+l ~ F 6r+3» F F 6 r _ 2 + F 6 r „j; = F 6 r , It i s e a s i l y v e r i f i e d that, and 6r+2 " F F 6r+i ~ 6r » F 6 r „ 2 - Fg-p.j = - F 6 r _ 3 . equation (21) yields that 2 F 1 2 r ^ 3 ~ (F 6r -t2 + F6r:tl) + (F6r±2 " F6r±1) 25 ( ) = Thus F i s twice a s q u a r e if and only if F 6 r , Pythagorean t r i p l e t by 8, Clearly, + F2 x 6r 6 r±3 F2 F6ri3, s i n c e F 3 = 2 and and V 2 F 1 2 r i 3 f o r m a F 6 = 8, F 6 r i s divisible but F 1 2 r ^ 3 and F 6 r ± 3 a r e divisible by 2, but not by 40 2 2 and F 6 r and F 6 r i . 3 a r e of the f o r m s 2(S - T ) and 4ST, w h e r e (S, T) = 1, and S and T a r e of opposite p a r i t i e s . In fact, Thus u = 2 S > T > 0, 354 SOME P R O P E R T I E S ASSOCIATED [Nov. F 6 r = 4ST and F 6 r ± 3 = 2(S 2 - T 2 ) (26) s i n c e 4ST i s c l e a r l y divisible by 8. holds, and c l e a r l y s ^ t ^ 0, , Put S + T = s and S - T = t; (s,t) = 1, and s and then (23) t a r e both odd, as s t a t e d in the t h e o r e m . We finally note that Conjecture 3 holds if, for a r e not satisfied by any i n t e g e r s r, s, r ^ 2, the equations (23) and t. REFERENCES 1. B r o t h e r U. Alfred, "On Square Lucas N u m b e r s , " The Fibonacci Q u a r t e r l y , Vol. 2, (1964), pp. 11-12. 2. S. A. B u r r , "On the O c c u r r e n c e of Squares in L u c a s Sequences, " A. M. S. Notices (Abstract 63T-302) 10 (1963), p . 367. 3. L. C a r l i t z , Solution to P r o b l e m H-24, T h e Fibonacci Q u a r t e r l y , Vol. 2, 4. R. D. C a r m i c h a e l , (1964) pp. 205-207. 1 a 5. "On the N u m e r i c a l F a c t o r s of t h e A r i t h m e t i c F o r m n ± fi , " Ann, Math. , Vol. 15 (1913-14), pp. 30-70. J . H. E. Cohn, "On Square F i b o n a c c i N u m b e r s , " P r o c . , 1963 N u m b e r T h e o r y Conf. (Boulder, 1963), pp. 51-53. 6. J . H. E. Cohn, "Square Fibonacci N u m b e r s , E t c . , " T h e Fibonacci Q u a r t e r l y , Vol. 2, (1964), pp. 109-113. 7. J . H. E. Cohn, "On Square Fibonacci N u n b e r s , " J o u r . Lond. Math. Soc. , Vol. 39, (1964), pp. 537-540. 8. J . H. Halton, "On a G e n e r a l Fibonacci Identity," T h e Fibonacci Q u a r t e r l y , Vol. 3, (1965), pp. 3 1 - 4 3 . 9. J . H. Halton, "On T h e Divisibility P r o p e r t i e s of F i b o n a c c i N u m b e r s , " The Fibonacci Q u a r t e r l y , Vol. 4, (1966), O c t . , pp. 217-240. 10. G. H. Hardy, E. M. Wright, An Introduction to the T h e o r y of N u m b e r s , (Clarendon P r e s s , Oxford, 1962). 11. L. M o s e r , L. C a r l i t z , P r o b l e m H - 2 , The F i b o n a c c i Q u a r t e r l y , Vol. 1, No. 1, (Feb. 1963), p . 46. 12. A. P . Rollett, P r o b l e m 5080, A m e r . Math. Monthly, Vol. 70, (1963), p . 216. 13. M. Ward, P r o b l e m H-24, The F i b o n a c c i Q u a r t e r l y , Vol. 1, No. 4, (Dec. 1963), p. 47. 1967] .WITH SQUARE FIBONACCI NUMBERS 355 14. M. Wunderlich, "On the Non-Existence of Fibonacci Squares, " Math. Comp. , Vol. 17 (1963), pp. 455-457. 15. O. Wyler, Solution to Problem 5080, Amer. Math. Monthly, Vol. 71, (1964), pp. 220-222. * • * • • The Fibonacci Bibliographical Research Center desires that any reader finding a Fibonacci reference send a card giving the reference and a description of the contents. brief Please forward all such information to: Fibonacci Bibliographical Research Center, Mathematics Department, San Jose State College, San Jose, California • • • • • P I C K I N G AUAY AT 1967 CHARLES U. TRIGG San DiegOp California 1967 can be made from two 2's, three 3 f s, four 4 ! s, five 5 ! s, six 6 f s ? or seven 7fs with the aid of eighteen toothpicks and mixed Arabic and Roman number symbolism* That is, ! 315*7 = \/1 v/ vi vi \/i v/ = 11 jj !!=!!! !',! ill =:viV.v,v
© Copyright 2026 Paperzz