TGF2023-2-20 100 Watt Discrete Power GaN on SiC HEMT Applications • Defense & Aerospace • Broadband Wireless Product Features • • • • • • • Functional Block Diagram Frequency Range: DC - 14 GHz 50.2 dBm Nominal P3dB at 6 GHz 65.1% Maximum PAE at 6 GHz 17 dB Linear Gain at 6 GHz Bias: VD = 28 V, IDQ = 1000 mA Technology: QGaN25 on SiC Chip Dimensions: 0.82 x 4.56 x 0.10 mm General Description Pad Configuration The Qorvo TGF2023-2-20 is a discrete 20 mm GaN on SiC HEMT which operates from DC-18 GHz. The TGF2023-2-20 is designed using Qorvo’s proven QGaN25 production process. This process features advanced field plate techniques to optimize microwave power and efficiency at high drain bias operating conditions. Pad No. Symbol 1-16 17 Backside VG / RF IN VD / RF OUT Source / Ground The TGF2023-2-20 typically provides 50.2 dBm of saturated output power with power gain of 14 dB at 6 GHz. The maximum power added efficiency is 65.1 % which makes the TGF2023-2-20 appropriate for high efficiency applications. Lead-free and RoHS compliant Datasheet: Rev D 01-22-16 © 2016 Qorvo Ordering Information Part ECCN Description TGF2023-2-20 3A001b.3.b 100 Watt GaN HEMT - 1 of 23 - Disclaimer: Subject to change without notice www.qorvo.com TGF2023-2-20 100 Watt Discrete Power GaN on SiC HEMT Absolute Maximum Ratings Recommended Operating Conditions1 Parameter Parameter Value Drain Voltage Range (VD) 12 - 40 V Drain Quiescent Current (IDQ) 1 A (Typ.) Value Drain to Gate Voltage (VDG) Gate Voltage Range (VG) Drain Current (ID) Gate Current (IG) Power Dissipation, CW (PD) CW Input Power (PIN) Channel Temperature (TCH) Mounting Temperature (30 Sec.) Storage Temperature 100 V −10 to 0 V 20 A −20 to 56 mA See graph on pg.5. +43 dBm 275°C 320°C −65 to 150°C Drain Current Under RF Drive ( ID) 1.6 A (Typ.) Gate Voltage (VG) −2.8 V (Typ.) Channel Temperature (TCH) 225°C (Max.) Power Dissipation, CW (PD)3 Power Dissipation, Pulsed (PD 54 W )2,3 70 W 1 Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions. 2 1.33 mS Pulse Width, 10 % Duty Cycle 3 Carrier plate temperature is at 85 °C Operation of this device outside the parameter ranges given above may cause permanent damage. These are stress ratings only, and functional operation of the device at these conditions is not implied. RF Characterization – Model Optimum Power Tune Simulation conditions: T = 25°C, Signal Duty Cycle = 10% Parameter Typical Value Frequency (F) 3 6 Units 8 10 GHz Drain Voltage (VD) 28 28 28 28 28 28 28 28 V Bias Current (IDQ) 400 1000 400 1000 400 1000 400 1000 mA Output P3dB (P3dB) 50.3 50.2 50.2 50.2 50.2 50.1 50.2 50.2 dBm PAE @ P3dB (PAE3dB) 62.4 61.7 58.7 58.6 56.1 56 53 53.3 % Gain @ P3dB (G3dB) 19.1 19.9 13.2 14 10.7 11.5 9.0 9.6 dB Parallel Resistance (1) (Rp) 64.4 64.8 59.7 59.2 54.8 54.4 49.6 49.2 Ω∙mm 0.264 0.255 0.291 0.295 0.317 0.315 0.326 0.324 pF/mm Parallel Capacitance (1) (Cp) Load Reflection Coefficient (2) (ΓL) 0.20∠131° 0.20∠131° 0.38∠132° 0.38∠132° 0.49∠137° 0.49∠138° 0.57∠143° 0.56∠143° -- Notes: 1. Large signal equivalent output network (normalized). 2. Characteristic Impedance (Zo) = 4 Ω. RF Characterization – Model Optimum Efficiency Tune Simulation conditions: T = 25°C, Signal Duty Cycle = 10% Parameter Frequency (F) Drain Voltage (VD) Bias Current (IDQ) Output P3dB (P3dB) PAE @ P3dB (PAE3dB) Gain @ P3dB (G3dB) Parallel Resistance (1) (Rp) Parallel Capacitance (1) (Cp) Load Reflection Coefficient (2) (ΓL) Typical Value 28 400 48.5 69.5 21.1 126 0.392 28 1000 48.7 68.5 21.7 123 0.385 28 400 48.8 66 14.7 110 0.388 28 1000 48.9 65.1 15.2 103 0.387 28 400 49.0 62.2 11.8 94.9 0.379 Units 28 1000 49.1 61.8 12.5 90.3 0.379 28 400 49.2 58.4 10.1 81.6 0.373 28 1000 49.1 58.4 10.6 80.5 0.378 0.40∠78° 0.39∠78° 0.58∠111° 0.56∠112° 0.64∠124° 0.63∠125° 0.69∠133° 0.69∠133° GHz V mA dBm % dB Ω∙mm pF/mm -- Notes: 1. Large signal equivalent output network (normalized). 2. Characteristic Impedance (Zo) = 4 Ω. Datasheet: Rev D 01-22-16 © 2016 Qorvo - 2 of 23 - Disclaimer: Subject to change without notice www.qorvo.com TGF2023-2-20 100 Watt Discrete Power GaN on SiC HEMT Thermal and Reliability - CW (1) Parameter Thermal Resistance, θJC Channel Temperature, TCH Median Lifetime, TM Thermal Resistance, θJC Channel Temperature, TCH Median Lifetime, TM Thermal Resistance, θJC Channel Temperature, TCH Median Lifetime, TM Thermal Resistance, θJC Channel Temperature, TCH Median Lifetime, TM Thermal Resistance, θJC Channel Temperature, TCH Median Lifetime, TM Test Conditions PD = 20 W, Tbaseplate = 85°C PD = 30 W, Tbaseplate = 85°C PD = 40 W, Tbaseplate = 85°C PD = 50 W, Tbaseplate = 85°C PD = 60 W, Tbaseplate = 85°C Value Units 2.15 128 3.4E10 2.27 153 1.8E9 2.38 180 1.0E8 2.52 211 6.0E6 2.68 246 3.5E5 °C/W °C Hrs °C/W °C Hrs °C/W °C Hrs °C/W °C Hrs °C/W °C Hrs Notes: 1. Assumes eutectic attach using 1.5 mil thick 80/20 AuSn mounted to a 10 mm x 10 mm x 40 mil CuMo Carrier Plate. Thermal and Reliability - Pulsed (1) Parameter Thermal Resistance, θJC Channel Temperature, TCH Median Lifetime, TM Thermal Resistance, θJC Channel Temperature, TCH Median Lifetime, TM Thermal Resistance, θJC Channel Temperature, TCH Median Lifetime, TM Thermal Resistance, θJC Channel Temperature, TCH Median Lifetime, TM Test Conditions PD = 70 W, Tbaseplate = 85°C Pulse Width = 100 uS Duty Cycle = 5% PD = 70 W, Tbaseplate = 85°C Pulse Width = 100 uS Duty Cycle = 10% PD = 70 W, Tbaseplate = 85°C Pulse Width = 100 uS Duty Cycle = 20% PD = 70 W, Tbaseplate = 85°C Pulse Width = 100 uS Duty Cycle = 50% Value Units 1.20 169 6.4E9 1.27 174 1.9E9 1.41 184 3.6E8 1.90 218 6.6E6 °C/W °C Hrs °C/W °C Hrs °C/W °C Hrs °C/W °C Hrs Notes: 1. Assumes eutectic attach using 1.5 mil thick 80/20 AuSn mounted to a 10 mm x 10 mm x 40 mil CuMo Carrier Plate. Datasheet: Rev D 01-22-16 © 2016 Qorvo - 3 of 23 - Disclaimer: Subject to change without notice www.qorvo.com TGF2023-2-20 100 Watt Discrete Power GaN on SiC HEMT Median Lifetime Median Lifetime vs. Channel Temperature Median Lifetime, TM (Hours) 1E+18 1E+17 1E+16 1E+15 1E+14 1E+13 1E+12 1E+11 1E+10 1E+09 1E+08 1E+07 1E+06 1E+05 1E+04 25 50 75 100 125 150 175 200 225 250 275 Channel Temperature, TCH (°C) Datasheet: Rev D 01-22-16 © 2016 Qorvo - 4 of 23 - Disclaimer: Subject to change without notice www.qorvo.com TGF2023-2-20 100 Watt Discrete Power GaN on SiC HEMT Maximum Channel Temperature - CW Maximum Tch vs. Pdiss for Fixed 85 C on .040" CuMo Carrier Plate 300 Carrier Plate held at 85C 280 1E6 Hours MTBF Operating Limit 260 Max Temperature, C 240 220 200 180 160 140 120 100 80 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 CW Power Dissipation, W Datasheet: Rev D 01-22-16 © 2016 Qorvo - 5 of 23 - Disclaimer: Subject to change without notice www.qorvo.com TGF2023-2-20 100 Watt Discrete Power GaN on SiC HEMT Peak Channel Temperature - Pulsed Peak Channel Temperature Tbase = 85oC, Pdiss = 70 W 300 290 280 270 5% Duty Cycle 10% Duty Cycle 20% Duty Cycle 50% Duty Cycle Peak Channel Temperature (oC) 260 250 240 230 220 210 200 190 180 170 160 150 140 130 1.00E-06 1.00E-05 1.00E-04 1.00E-03 1.00E-02 1.00E-01 Pulse Width (sec) Datasheet: Rev D 01-22-16 © 2016 Qorvo - 6 of 23 - Disclaimer: Subject to change without notice www.qorvo.com TGF2023-2-20 100 Watt Discrete Power GaN on SiC HEMT Model Maximum Gain Performance Maximum Gain vs. Frequency 35 Temp.=+25°C VD = 12 V Maximum Gain (dB) 30 25 20 IDQ = 1000 mA 15 IDQ = 400 mA 10 5 0 0 5 10 15 20 25 30 Frequency (GHz) Maximum Gain vs. Frequency 35 Temp.=+25°C VD = 28 V Maximum Gain (dB) 30 25 20 IDQ = 1000 mA 15 IDQ = 400 mA 10 5 0 0 5 10 15 20 25 30 Frequency (GHz) Datasheet: Rev D 01-22-16 © 2016 Qorvo - 7 of 23 - Disclaimer: Subject to change without notice www.qorvo.com TGF2023-2-20 100 Watt Discrete Power GaN on SiC HEMT Model Load Pull Contours1 1Simulated signal: 10% pulses. Vd = 28 V, Idq = 400 mA 3GHz, Load-pull Zs(fo) = 0.39+1.64iΩ Zs(2fo) = 4Ω Zs(3fo) = 4Ω Zl(2fo) = 4Ω Zl(3fo) = 4Ω • Max Power is 50.3dBm at Z = 2.923+0.938iΩ Γ = -0.1347+0.1538i • Max Gain is 22.2dB at Z = 1.807+3.347iΩ Γ = -0.0342+0.5961i • Max PAE is 69.5% at Z = 3.378+3.144iΩ Γ = 0.0824+0.391i 21.8 21.3 20.8 69.2 66.2 63.2 3 2 1.8 1.6 1.4 1.2 1 50 0.9 0.8 0.7 0.6 0.5 50.2 49.8 Power Gain PAE Zo = 4Ω 3dB compression referenced to peak gain Datasheet: Rev D 01-22-16 © 2016 Qorvo - 8 of 23 - Disclaimer: Subject to change without notice www.qorvo.com TGF2023-2-20 100 Watt Discrete Power GaN on SiC HEMT Model Load Pull Contours1 1Simulated signal: 10% pulses. Vd = 28 V, Idq = 400 mA 6GHz, Load-pull 0.6 Zs(fo) = 0.33+0.71i Ω Zs(2fo) = 4Ω Zs(3fo) = 4Ω Zl(2fo) = 4Ω Zl(3fo) = 4Ω • Max Power is 50.2dBm at Z = 2.088+1.37iΩ Γ = -0.2508+0.2815i • Max Gain is 15.1dB at Z = 1.088+3.082i Ω Γ = -0.1503+0.6966i • Max PAE is 66% at Z = 1.53+2.467iΩ Γ = -0.2066+0.5383i 14.6 14.1 65.1 13.6 62.1 59.1 50.1 49.9 Datasheet: Rev D 01-22-16 © 2016 Qorvo - 9 of 23 - Power Gain PAE 2 1.8 1.6 1.4 1.2 1 0.9 Zo = 4Ω 3dB compression referenced to peak gain 0.8 0.7 0.6 0.5 0.4 49.7 Disclaimer: Subject to change without notice www.qorvo.com TGF2023-2-20 100 Watt Discrete Power GaN on SiC HEMT Model Load Pull Contours1 1Simulated signal: 10% pulses. Vd = 28 V, Idq = 400 mA 6GHz, Load-pull 0.6 Zs(fo) = 0.33+0.71i Ω Zs(2fo) = 4Ω Zs(3fo) = 4Ω Zl(2fo) = 4Ω Zl(3fo) = 4Ω • Max Power is 50.2dBm at Z = 2.088+1.37iΩ Γ = -0.2508+0.2815i • Max Gain is 15.1dB at Z = 1.088+3.082i Ω Γ = -0.1503+0.6966i • Max PAE is 66% at Z = 1.53+2.467iΩ Γ = -0.2066+0.5383i 14.6 14.1 65.1 13.6 62.1 59.1 50.1 49.9 Datasheet: Rev D 01-22-16 © 2016 Qorvo - 10 of 23 - Power Gain PAE 2 1.8 1.6 1.4 1.2 1 0.9 Zo = 4Ω 3dB compression referenced to peak gain 0.8 0.7 0.6 0.5 0.4 49.7 Disclaimer: Subject to change without notice www.qorvo.com TGF2023-2-20 100 Watt Discrete Power GaN on SiC HEMT Model Load Pull Contours1 1Simulated signal: 10% pulses. Vd = 28 V, Idq = 400 mA 8GHz, Load-pull 0.6 Zs(fo) = 0.4+0.33i Ω Zs(2fo) = 4Ω Zs(3fo) = 4Ω Zl(2fo) = 4Ω Zl(3fo) = 4Ω • Max Power is 50.2dBm at Z = 1.554+1.357i Ω Γ = -0.3593+0.3322i • Max Gain is 12.3dB at Z = 1.156+2.531i Ω Γ = -0.2503+0.6137i • Max PAE is 62.2% at Z = 1.111+2.009i Ω Γ = -0.3558+0.5328i 12.1 11.6 58.7 11.1 55.7 52.7 50.1 49.9 49.7 Power Gain PAE Zo = 4Ω 3dB compression referenced to peak gain Datasheet: Rev D 01-22-16 © 2016 Qorvo - 11 of 23 - Disclaimer: Subject to change without notice www.qorvo.com TGF2023-2-20 100 Watt Discrete Power GaN on SiC HEMT Model Load Pull Contours1 1Simulated signal: 10% pulses. Vd = 28 V, Idq = 400 mA 10GHz, Load-pull 0.6 Zs(fo) = 0.33+0.14iΩ Zs(2fo) = 4Ω Zs(3fo) = 4Ω Zl(2fo) = 4Ω Zl(3fo) = 4Ω 0.5 • Max Power is 50.2dBm at Z = 1.222+1.239i Ω Γ = -0.4502+0.3442i • Max Gain is 10.5dB at Z = 1+2.034i Ω Γ = -0.3728+0.5584i • Max PAE is 58.4% at Z = 0.875+1.674i Ω Γ = -0.4678+0.5041i 10.1 9.65 9.15 56.1 53.1 50.1 50 49.8 49.6 Power Gain PAE Zo = 4Ω 3dB compression referenced to peak gain Datasheet: Rev D 01-22-16 © 2016 Qorvo - 12 of 23 - Disclaimer: Subject to change without notice www.qorvo.com TGF2023-2-20 100 Watt Discrete Power GaN on SiC HEMT Model Load Pull Contours1 1Simulated signal: 10% pulses. Vd = 28 V, Idq = 1000 mA 3GHz, Load-pull Zs(fo) = 0.38+1.58i Ω Zs(2fo) = 4Ω Zs(3fo) = 4Ω Zl(2fo) = 4Ω Zl(3fo) = 4Ω • Max Power is 50.2dBm at Z = 2.953+0.921i Ω Γ = -0.1307+0.1498i • Max Gain is 22.9dB at Z = 1.874+3.467i Ω Γ = -0.0101+0.5961i • Max PAE is 68.5% at Z = 3.425+3.053i Ω Γ = 0.0784+0.379i 22.7 22.2 21.7 65.9 62.9 3 2 1.8 1.6 1.4 49.9 1.2 59.9 1 0.9 0.8 0.7 0.6 0.5 50.1 49.7 Power Gain PAE Zo = 4Ω 3dB compression referenced to peak gain Datasheet: Rev D 01-22-16 © 2016 Qorvo - 13 of 23 - Disclaimer: Subject to change without notice www.qorvo.com TGF2023-2-20 100 Watt Discrete Power GaN on SiC HEMT Model Load Pull Contours1 1Simulated signal: 10% pulses. Vd = 28 V, Idq = 1000 mA 6GHz, Load-pull Zs(fo) = 0.39+0.55i Ω Zs(2fo) = 4Ω Zs(3fo) = 4Ω Zl(2fo) = 4Ω Zl(3fo) = 4Ω • Max Power is 50.2dBm at Z = 2.066+1.359i Ω Γ = -0.2558+0.2815i • Max Gain is 15.7dB at Z = 1.511+3.089i Ω Γ = -0.1046+0.6192i • Max PAE is 65.1% at Z = 1.579+2.377i Ω Γ = -0.2136+0.5172i 15.7 15.2 14.7 63.6 60.6 57.6 50.1 49.9 Datasheet: Rev D 01-22-16 © 2016 Qorvo - 14 of 23 - Power Gain PAE 2 1.8 1.6 1.4 1.2 1 Zo = 4Ω 3dB compression referenced to peak gain 0.9 0.8 0.7 0.6 0.5 49.7 Disclaimer: Subject to change without notice www.qorvo.com TGF2023-2-20 100 Watt Discrete Power GaN on SiC HEMT Model Load Pull Contours1 1Simulated signal: 10% pulses. Vd = 28 V, Idq = 1000 mA 8GHz, Load-pull 0.6 Zs(fo) = 0.42+0.28i Ω Zs(2fo) = 4Ω Zs(3fo) = 4Ω Zl(2fo) = 4Ω Zl(3fo) = 4Ω • Max Power is 50.1dBm at Z = 1.56+1.344i Ω Γ = -0.3593+0.3287i • Max Gain is 13.1dB at Z = 1.136+2.601i Ω Γ = -0.2397+0.6278i • Max PAE is 61.8% at Z = 1.137+1.96i Ω Γ = -0.3593+0.5187i 12.8 12.3 11.8 58.8 55.8 52.8 50.1 49.9 49.7 Power Gain PAE Zo = 4Ω 3dB compression referenced to peak gain Datasheet: Rev D 01-22-16 © 2016 Qorvo - 15 of 23 - Disclaimer: Subject to change without notice www.qorvo.com TGF2023-2-20 100 Watt Discrete Power GaN on SiC HEMT Model Load Pull Contours1 1Simulated signal: 10% pulses. Vd = 28 V, Idq = 1000 mA 10GHz, Load-pull 0.6 Zs(fo) = 0.37+0.13iΩ Zs(2fo) = 4Ω Zs(3fo) = 4Ω Zl(2fo) = 4Ω Zl(3fo) = 4Ω 0.5 • Max Power is 50.2dBm at Z = 1.227+1.23i Ω Γ = -0.4502+0.3412i • Max Gain is 11.2dB at Z = 0.953+2.064i Ω Γ = -0.3764+0.5735i • Max PAE is 58.4% at Z = 0.863+1.652i Ω Γ = -0.4749+0.5011i 11.1 10.6 10.1 55.5 52.5 49.5 49.9 49.7 49.5 Power Gain PAE Zo = 4Ω 3dB compression referenced to peak gain Datasheet: Rev D 01-22-16 © 2016 Qorvo - 16 of 23 - Disclaimer: Subject to change without notice www.qorvo.com TGF2023-2-20 100 Watt Discrete Power GaN on SiC HEMT Model Drive-up Data – 3 GHz TGF2023-2-20 Gain and PAE vs. Output Power 3GHz, Vds =28V, Idq =400mA, 10% Duty Cycle, Power Tuned Zs-fo = 0.39+1.64iΩ Zs-2fo = 4Ω Zs-3fo = 4Ω Zl-fo = 2.92+0.94iΩ Zl-2fo = 4Ω Zl-3fo = 4Ω 21 20 19 18 70 22 60 21 50 40 20 19 30 18 17 20 17 16 10 16 15 39 40 41 42 43 44 45 46 47 Output Power [dBm] 48 49 50 0 51 15 39 100 Gain 90 PAE 80 23 22 21 20 19 Zs-fo = 0.38+1.58iΩ Zs-2fo = 4Ω Zs-3fo = 4Ω Zl-fo = 2.95+0.92iΩ Zl-2fo = 4Ω Zl-3fo = 4Ω 70 22 60 21 50 40 20 19 20 17 16 10 16 43 44 45 46 47 Output Power [dBm] Datasheet: Rev D 01-22-16 © 2016 Qorvo 48 49 50 30 Gain PAE 20 10 40 41 42 43 44 45 46 Output Power [dBm] 47 48 0 49 90 17 42 40 100 18 41 50 24 30 40 60 25 18 15 39 70 23 Gain [dB] 24 PAE [%] 25 80 Zs-fo = 0.39+1.64iΩ Zs-2fo = 4Ω Zs-3fo = 4Ω Zl-fo = 3.38+3.14iΩ Zl-2fo = 4Ω Zl-3fo = 4Ω TGF2023-2-20 Gain and PAE vs. Output Power 3GHz, Vds =28V, Idq =1000mA, 10% Duty Cycle, Efficiency Tuned TGF2023-2-20 Gain and PAE vs. Output Power 3GHz, Vds =28V, Idq =1000mA, 10% Duty Cycle, Power Tuned Gain [dB] 90 0 51 15 39 - 17 of 23 - 80 Zs-fo = 0.38+1.58iΩ Zs-2fo = 4Ω Zs-3fo = 4Ω Zl-fo = 3.43+3.05iΩ Zl-2fo = 4Ω Zl-3fo = 4Ω 70 60 50 40 30 Gain PAE 20 10 40 41 42 43 44 45 46 Output Power [dBm] 47 48 0 49 Disclaimer: Subject to change without notice www.qorvo.com PAE [%] Gain [dB] 22 100 24 23 Gain [dB] 23 25 PAE [%] 100 Gain 90 PAE 80 24 PAE [%] 25 TGF2023-2-20 Gain and PAE vs. Output Power 3GHz, Vds =28V, Idq =400mA, 10% Duty Cycle, Efficiency Tuned TGF2023-2-20 100 Watt Discrete Power GaN on SiC HEMT Model Drive-up Data – 6 GHz 80 Gain 72 PAE 64 20 18 64 56 17 56 16 48 16 48 15 40 15 40 14 32 13 24 13 12 16 12 11 8 11 Gain [dB] 17 10 39 40 41 42 43 44 45 46 47 Output Power [dBm] 48 49 50 56 Gain [dB] 48 Zs-3fo = 4Ω 15 Zl-fo = 2.07+1.36iΩ 42 43 44 45 46 Output Power [dBm] 8 47 48 49 0 50 40 80 Gain PAE 19 72 18 64 Zs-fo = 0.39+0.55iΩ Gain [dB] 17 Zs-fo = 0.39+0.55iΩ 41 16 20 PAE [%] 18 16 Zs-2fo = 4Ω 40 24 TGF2023-2-20 Gain and PAE vs. Output Power 6GHz, Vds =28V, Idq =1000mA, 10% Duty Cycle, Efficiency Tuned 80 Gain 72 PAE 64 19 32 Zs-fo = 0.33+0.71iΩ Zs-2fo = 4Ω Zs-3fo = 4Ω Zl-fo = 1.53+2.47iΩ Zl-2fo = 4Ω Zl-3fo = 4Ω 10 39 0 51 TGF2023-2-20 Gain and PAE vs. Output Power 6GHz, Vds =28V, Idq =1000mA, 10% Duty Cycle, Power Tuned 20 14 72 17 Zs-2fo = 4Ω 16 Zs-3fo = 4Ω 56 15 Zl-2fo = 4Ω 40 14 32 48 Zl-fo = 1.58+2.38iΩ Zl-3fo = 4Ω Zl-2fo = 4Ω 14 Zl-3fo = 4Ω 32 13 24 13 24 12 16 12 16 11 8 11 8 10 39 40 41 42 43 44 45 46 47 Output Power [dBm] Datasheet: Rev D 01-22-16 © 2016 Qorvo 48 49 50 0 51 10 39 - 18 of 23 - 40 41 42 43 44 45 46 Output Power [dBm] 47 48 49 PAE [%] 18 80 Gain PAE 19 Gain [dB] Zs-fo = 0.33+0.71iΩ Zs-2fo = 4Ω Zs-3fo = 4Ω Zl-fo = 2.09+1.37iΩ Zl-2fo = 4Ω Zl-3fo = 4Ω 19 PAE [%] 20 TGF2023-2-20 Gain and PAE vs. Output Power 6GHz, Vds =28V, Idq =400mA, 10% Duty Cycle, Efficiency Tuned PAE [%] TGF2023-2-20 Gain and PAE vs. Output Power 6GHz, Vds =28V, Idq =400mA, 10% Duty Cycle, Power Tuned 0 50 Disclaimer: Subject to change without notice www.qorvo.com TGF2023-2-20 100 Watt Discrete Power GaN on SiC HEMT Model Drive-up Data – 8 GHz TGF2023-2-20 Gain and PAE vs. Output Power 8GHz, Vds =28V, Idq =400mA, 10% Duty Cycle, Power Tuned 56 15 56 14 48 14 48 13 40 13 40 12 32 11 24 10 16 9 8 8 39 40 41 42 43 44 45 46 47 Output Power [dBm] 48 49 50 17 Gain [dB] 15 Gain 72 PAE 64 PAE [%] 16 18 10 9 0 51 8 39 56 Gain [dB] 13 12 42 43 44 45 46 Output Power [dBm] 8 47 48 49 0 50 48 40 32 80 Gain 72 PAE 64 17 16 Gain [dB] 15 Zs-fo = 0.42+0.27iΩ Zs-2fo = 4Ω Zs-3fo = 4Ω Zl-fo = 1.56+1.35iΩ Zl-2fo = 4Ω Zl-3fo = 4Ω 41 16 18 PAE [%] 16 14 40 24 TGF2023-2-20 Gain and PAE vs. Output Power 8GHz, Vds =28V, Idq =1000mA, 10% Duty Cycle, Efficiency Tuned 80 Gain 72 PAE 64 17 32 Zs-fo = 0.4+0.33iΩ Zs-2fo = 4Ω Zs-3fo = 4Ω Zl-fo = 1.11+2.01iΩ Zl-2fo = 4Ω Zl-3fo = 4Ω 11 TGF2023-2-20 Gain and PAE vs. Output Power 8GHz, Vds =28V, Idq =1000mA, 10% Duty Cycle, Power Tuned 18 12 15 Zs-fo = 0.42+0.27iΩ 14 Zs-2fo = 4Ω 56 13 Zl-fo = 1.14+1.96iΩ 40 12 32 48 Zs-3fo = 4Ω Zl-2fo = 4Ω Zl-3fo = 4Ω 24 11 24 10 16 10 16 9 8 9 8 11 8 39 40 41 42 43 44 45 46 47 Output Power [dBm] Datasheet: Rev D 01-22-16 © 2016 Qorvo 48 49 50 PAE [%] 16 80 Gain 72 PAE 64 Zs-fo = 0.4+0.33iΩ Zs-2fo = 4Ω Zs-3fo = 4Ω Zl-fo = 1.55+1.36iΩ Zl-2fo = 4Ω Zl-3fo = 4Ω 17 Gain [dB] TGF2023-2-20 Gain and PAE vs. Output Power 8GHz, Vds =28V, Idq =400mA, 10% Duty Cycle, Efficiency Tuned 80 0 51 8 39 - 19 of 23 - 40 41 42 43 44 45 46 Output Power [dBm] 47 48 49 PAE [%] 18 0 50 Disclaimer: Subject to change without notice www.qorvo.com TGF2023-2-20 100 Watt Discrete Power GaN on SiC HEMT Model Drive-up Data – 10 GHz TGF2023-2-20 Gain and PAE vs. Output Power 10GHz, Vds =28V, Idq =400mA, 10% Duty Cycle, Power Tuned 13 80 Gain 72 PAE 64 12 56 12 Zs-fo = 0.33+0.14iΩ 48 11 Zs-3fo = 4Ω 9 8 40 32 13 10 9 48 Zl-fo = 0.88+1.67iΩ Zl-2fo = 4Ω Zl-3fo = 4Ω 40 32 24 8 24 7 16 7 16 6 8 6 8 5 39 40 41 42 43 44 45 46 47 Output Power [dBm] 48 49 50 0 51 5 39 TGF2023-2-20 Gain and PAE vs. Output Power 10GHz, Vds =28V, Idq =400mA, 10% Duty Cycle, Power Tuned 13 12 11 10 9 80 Gain 72 PAE 64 15 56 12 48 11 Zs-fo = 0.37+0.13iΩ Zs-2fo = 4Ω Zs-3fo = 4Ω Zl-fo = 1.23+1.23iΩ Zl-2fo = 4Ω Zl-3fo = 4Ω 40 32 41 42 43 44 45 46 Output Power [dBm] 47 48 49 0 50 80 Gain 72 PAE 64 14 13 Gain [dB] 14 40 TGF2023-2-20 Gain and PAE vs. Output Power 10GHz, Vds =28V, Idq =1000mA, 10% Duty Cycle, Efficiency Tuned PAE [%] 15 Gain [dB] 56 Zs-2fo = 4Ω 10 Zs-fo = 0.37+0.13iΩ Zs-2fo = 4Ω Zs-3fo = 4Ω Zl-fo = 0.86+1.65iΩ Zl-2fo = 4Ω Zl-3fo = 4Ω 56 48 40 9 32 8 24 8 24 7 16 7 16 6 8 6 8 5 39 40 41 42 43 44 45 46 47 Output Power [dBm] Datasheet: Rev D 01-22-16 © 2016 Qorvo 48 49 50 PAE [%] 10 80 Gain 72 PAE 64 14 0 51 5 39 - 20 of 23 - 40 41 42 43 44 45 46 Output Power [dBm] 47 48 49 PAE [%] Zs-fo = 0.33+0.14iΩ Zs-2fo = 4Ω Zs-3fo = 4Ω Zl-fo = 1.22+1.24iΩ Zl-2fo = 4Ω Zl-3fo = 4Ω 11 15 Gain [dB] Gain [dB] 14 PAE [%] 15 TGF2023-2-20 Gain and PAE vs. Output Power 10GHz, Vds =28V, Idq =400mA, 10% Duty Cycle, Efficiency Tuned 0 50 Disclaimer: Subject to change without notice www.qorvo.com TGF2023-2-20 100 Watt Discrete Power GaN on SiC HEMT Model A model is available for download from Modelithics (at http://www.modelithics.com/mvp/Qorvo&tab=3) by approved Qorvo customers. The model is compatible with the industry’s most popular design software including Agilent ADS and National Instruments/AWR applications. Once on the Modelithics web page, the user will need to register for a free license before being granted the download. Mechanical Drawing Bond Pads Pad No. Description Dimensions 1-16 2 Die Backside Gate Drain Source / Ground 0.154 x 0.115 0.154 x 4.130 0.824 x 4.562 Notes: 1. Units: millimeters 2. Thickness: 0.100 mm 3. Die x,y size tolerance: ± 0.050 mm Datasheet: Rev D 01-22-16 © 2016 Qorvo - 21 of 23 - Disclaimer: Subject to change without notice www.qorvo.com TGF2023-2-20 100 Watt Discrete Power GaN on SiC HEMT Assembly Notes Component placement and adhesive attachment assembly notes: • Vacuum pencils and/or vacuum collets are the preferred method of pick up. • Air bridges must be avoided during placement. • The force impact is critical during auto placement. • Organic attachment (i.e. epoxy) not recommended. Reflow process assembly notes: • Use AuSn (80/20) solder and limit exposure to temperatures above 300°C to 3-4 minutes, maximum. • An alloy station or conveyor furnace with reducing atmosphere should be used. • Do not use any kind of flux. • Coefficient of thermal expansion matching is critical for long-term reliability. • Devices must be stored in a dry nitrogen atmosphere. Interconnect process assembly notes: • Ball bonding is the preferred interconnect technique, except where noted on the assembly diagram. • Force, time, and ultrasonics are critical bonding parameters. • Aluminum wire should not be used. • Devices with small pad sizes should be bonded with 0.0007-inch wire. Disclaimer GaN/SiC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test. Bias-up Procedure Bias-down Procedure 1. Set VG to -5 V. 2. Set ID limit to 1.1 A 3. Set VD to 28 V. 4. Adjust VG more positive until quiescent ID is 1 A. 5. Set ID limit to 8 A. 6. Apply RF signal. 1. Turn off RF signal. Datasheet: Rev D 01-22-16 © 2016 Qorvo 2. Turn off VD and wait 1 second to allow drain capacitor dissipation. 3. Turn off VG. - 22 of 23 - Disclaimer: Subject to change without notice www.qorvo.com TGF2023-2-20 100 Watt Discrete Power GaN on SiC HEMT Product Compliance Information ESD Sensitivity Ratings Solderability Compatible with gold/tin (320°C maximum reflow temperature) soldering processes. Caution! ESD-Sensitive Device RoHs Compliance GaN devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test. This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment). This product also has the following attributes: • Lead Free • Halogen Free (Chlorine, Bromine) • Antimony Free • TBBP-A (C15H12Br402) Free • PFOS Free • SVHC Free Not HAST compliant. Contact Information For the latest specifications, additional product information, worldwide sales and distribution locations, and information about Qorvo: Web: www.qorvo.com Email: [email protected] Fax: Tel: +1.972.994.8465 +1.972.994.8504 For technical questions and application information: Email: [email protected] Important Notice The information contained herein is believed to be reliable. Qorvo makes no warranties regarding the information contained herein. Qorvo assumes no responsibility or liability whatsoever for any of the information contained herein. Qorvo assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. Datasheet: Rev D 01-22-16 © 2016 Qorvo - 23 of 23 - Disclaimer: Subject to change without notice www.qorvo.com
© Copyright 2026 Paperzz