TGF2023-2-20

TGF2023-2-20
100 Watt Discrete Power GaN on SiC HEMT
Applications
• Defense & Aerospace
• Broadband Wireless
Product Features
•
•
•
•
•
•
•
Functional Block Diagram
Frequency Range: DC - 14 GHz
50.2 dBm Nominal P3dB at 6 GHz
65.1% Maximum PAE at 6 GHz
17 dB Linear Gain at 6 GHz
Bias: VD = 28 V, IDQ = 1000 mA
Technology: QGaN25 on SiC
Chip Dimensions: 0.82 x 4.56 x 0.10 mm
General Description
Pad Configuration
The Qorvo TGF2023-2-20 is a discrete 20 mm GaN on
SiC HEMT which operates from DC-18 GHz. The
TGF2023-2-20 is designed using Qorvo’s proven
QGaN25 production process. This process features
advanced field plate techniques to optimize microwave
power and efficiency at high drain bias operating
conditions.
Pad No.
Symbol
1-16
17
Backside
VG / RF IN
VD / RF OUT
Source / Ground
The TGF2023-2-20 typically provides 50.2 dBm of
saturated output power with power gain of 14 dB at
6 GHz. The maximum power added efficiency is 65.1 %
which makes the TGF2023-2-20 appropriate for high
efficiency applications.
Lead-free and RoHS compliant
Datasheet: Rev D 01-22-16
© 2016 Qorvo
Ordering Information
Part
ECCN
Description
TGF2023-2-20
3A001b.3.b
100 Watt GaN HEMT
- 1 of 23 -
Disclaimer: Subject to change without notice
www.qorvo.com
TGF2023-2-20
100 Watt Discrete Power GaN on SiC HEMT
Absolute Maximum Ratings
Recommended Operating Conditions1
Parameter
Parameter
Value
Drain Voltage Range (VD)
12 - 40 V
Drain Quiescent Current (IDQ)
1 A (Typ.)
Value
Drain to Gate Voltage (VDG)
Gate Voltage Range (VG)
Drain Current (ID)
Gate Current (IG)
Power Dissipation, CW (PD)
CW Input Power (PIN)
Channel Temperature (TCH)
Mounting Temperature (30 Sec.)
Storage Temperature
100 V
−10 to 0 V
20 A
−20 to 56 mA
See graph on pg.5.
+43 dBm
275°C
320°C
−65 to 150°C
Drain Current Under RF Drive ( ID)
1.6 A (Typ.)
Gate Voltage (VG)
−2.8 V (Typ.)
Channel Temperature (TCH)
225°C (Max.)
Power Dissipation, CW (PD)3
Power Dissipation, Pulsed (PD
54 W
)2,3
70 W
1
Electrical specifications are measured at specified test conditions.
Specifications are not guaranteed over all recommended operating
conditions.
2
1.33 mS Pulse Width, 10 % Duty Cycle
3
Carrier plate temperature is at 85 °C
Operation of this device outside the parameter ranges given above
may cause permanent damage. These are stress ratings only, and
functional operation of the device at these conditions is not implied.
RF Characterization – Model Optimum Power Tune
Simulation conditions: T = 25°C, Signal Duty Cycle = 10%
Parameter
Typical Value
Frequency (F)
3
6
Units
8
10
GHz
Drain Voltage (VD)
28
28
28
28
28
28
28
28
V
Bias Current (IDQ)
400
1000
400
1000
400
1000
400
1000
mA
Output P3dB (P3dB)
50.3
50.2
50.2
50.2
50.2
50.1
50.2
50.2
dBm
PAE @ P3dB (PAE3dB)
62.4
61.7
58.7
58.6
56.1
56
53
53.3
%
Gain @ P3dB (G3dB)
19.1
19.9
13.2
14
10.7
11.5
9.0
9.6
dB
Parallel Resistance (1) (Rp)
64.4
64.8
59.7
59.2
54.8
54.4
49.6
49.2
Ω∙mm
0.264
0.255
0.291
0.295
0.317
0.315
0.326
0.324
pF/mm
Parallel Capacitance (1) (Cp)
Load Reflection Coefficient
(2)
(ΓL)
0.20∠131° 0.20∠131° 0.38∠132° 0.38∠132° 0.49∠137° 0.49∠138° 0.57∠143° 0.56∠143°
--
Notes:
1. Large signal equivalent output network (normalized).
2. Characteristic Impedance (Zo) = 4 Ω.
RF Characterization – Model Optimum Efficiency Tune
Simulation conditions: T = 25°C, Signal Duty Cycle = 10%
Parameter
Frequency (F)
Drain Voltage (VD)
Bias Current (IDQ)
Output P3dB (P3dB)
PAE @ P3dB (PAE3dB)
Gain @ P3dB (G3dB)
Parallel Resistance (1) (Rp)
Parallel Capacitance (1) (Cp)
Load Reflection Coefficient (2) (ΓL)
Typical Value
28
400
48.5
69.5
21.1
126
0.392
28
1000
48.7
68.5
21.7
123
0.385
28
400
48.8
66
14.7
110
0.388
28
1000
48.9
65.1
15.2
103
0.387
28
400
49.0
62.2
11.8
94.9
0.379
Units
28
1000
49.1
61.8
12.5
90.3
0.379
28
400
49.2
58.4
10.1
81.6
0.373
28
1000
49.1
58.4
10.6
80.5
0.378
0.40∠78° 0.39∠78° 0.58∠111° 0.56∠112° 0.64∠124° 0.63∠125° 0.69∠133° 0.69∠133°
GHz
V
mA
dBm
%
dB
Ω∙mm
pF/mm
--
Notes:
1. Large signal equivalent output network (normalized).
2. Characteristic Impedance (Zo) = 4 Ω.
Datasheet: Rev D 01-22-16
© 2016 Qorvo
- 2 of 23 -
Disclaimer: Subject to change without notice
www.qorvo.com
TGF2023-2-20
100 Watt Discrete Power GaN on SiC HEMT
Thermal and Reliability - CW (1)
Parameter
Thermal Resistance, θJC
Channel Temperature, TCH
Median Lifetime, TM
Thermal Resistance, θJC
Channel Temperature, TCH
Median Lifetime, TM
Thermal Resistance, θJC
Channel Temperature, TCH
Median Lifetime, TM
Thermal Resistance, θJC
Channel Temperature, TCH
Median Lifetime, TM
Thermal Resistance, θJC
Channel Temperature, TCH
Median Lifetime, TM
Test Conditions
PD = 20 W, Tbaseplate = 85°C
PD = 30 W, Tbaseplate = 85°C
PD = 40 W, Tbaseplate = 85°C
PD = 50 W, Tbaseplate = 85°C
PD = 60 W, Tbaseplate = 85°C
Value
Units
2.15
128
3.4E10
2.27
153
1.8E9
2.38
180
1.0E8
2.52
211
6.0E6
2.68
246
3.5E5
°C/W
°C
Hrs
°C/W
°C
Hrs
°C/W
°C
Hrs
°C/W
°C
Hrs
°C/W
°C
Hrs
Notes:
1. Assumes eutectic attach using 1.5 mil thick 80/20 AuSn mounted to a 10 mm x 10 mm x 40 mil CuMo Carrier Plate.
Thermal and Reliability - Pulsed (1)
Parameter
Thermal Resistance, θJC
Channel Temperature, TCH
Median Lifetime, TM
Thermal Resistance, θJC
Channel Temperature, TCH
Median Lifetime, TM
Thermal Resistance, θJC
Channel Temperature, TCH
Median Lifetime, TM
Thermal Resistance, θJC
Channel Temperature, TCH
Median Lifetime, TM
Test Conditions
PD = 70 W, Tbaseplate = 85°C
Pulse Width = 100 uS
Duty Cycle = 5%
PD = 70 W, Tbaseplate = 85°C
Pulse Width = 100 uS
Duty Cycle = 10%
PD = 70 W, Tbaseplate = 85°C
Pulse Width = 100 uS
Duty Cycle = 20%
PD = 70 W, Tbaseplate = 85°C
Pulse Width = 100 uS
Duty Cycle = 50%
Value
Units
1.20
169
6.4E9
1.27
174
1.9E9
1.41
184
3.6E8
1.90
218
6.6E6
°C/W
°C
Hrs
°C/W
°C
Hrs
°C/W
°C
Hrs
°C/W
°C
Hrs
Notes:
1. Assumes eutectic attach using 1.5 mil thick 80/20 AuSn mounted to a 10 mm x 10 mm x 40 mil CuMo Carrier Plate.
Datasheet: Rev D 01-22-16
© 2016 Qorvo
- 3 of 23 -
Disclaimer: Subject to change without notice
www.qorvo.com
TGF2023-2-20
100 Watt Discrete Power GaN on SiC HEMT
Median Lifetime
Median Lifetime vs. Channel Temperature
Median Lifetime, TM (Hours)
1E+18
1E+17
1E+16
1E+15
1E+14
1E+13
1E+12
1E+11
1E+10
1E+09
1E+08
1E+07
1E+06
1E+05
1E+04
25
50
75
100 125 150 175 200 225 250 275
Channel Temperature, TCH (°C)
Datasheet: Rev D 01-22-16
© 2016 Qorvo
- 4 of 23 -
Disclaimer: Subject to change without notice
www.qorvo.com
TGF2023-2-20
100 Watt Discrete Power GaN on SiC HEMT
Maximum Channel Temperature - CW
Maximum Tch vs. Pdiss for Fixed 85 C on .040" CuMo Carrier Plate
300
Carrier Plate held at 85C
280
1E6 Hours MTBF Operating Limit
260
Max Temperature, C
240
220
200
180
160
140
120
100
80
0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
CW Power Dissipation, W
Datasheet: Rev D 01-22-16
© 2016 Qorvo
- 5 of 23 -
Disclaimer: Subject to change without notice
www.qorvo.com
TGF2023-2-20
100 Watt Discrete Power GaN on SiC HEMT
Peak Channel Temperature - Pulsed
Peak Channel Temperature
Tbase = 85oC, Pdiss = 70 W
300
290
280
270
5% Duty Cycle
10% Duty Cycle
20% Duty Cycle
50% Duty Cycle
Peak Channel Temperature (oC)
260
250
240
230
220
210
200
190
180
170
160
150
140
130
1.00E-06
1.00E-05
1.00E-04
1.00E-03
1.00E-02
1.00E-01
Pulse Width (sec)
Datasheet: Rev D 01-22-16
© 2016 Qorvo
- 6 of 23 -
Disclaimer: Subject to change without notice
www.qorvo.com
TGF2023-2-20
100 Watt Discrete Power GaN on SiC HEMT
Model Maximum Gain Performance
Maximum Gain vs. Frequency
35
Temp.=+25°C
VD = 12 V
Maximum Gain (dB)
30
25
20
IDQ = 1000 mA
15
IDQ = 400 mA
10
5
0
0
5
10
15
20
25
30
Frequency (GHz)
Maximum Gain vs. Frequency
35
Temp.=+25°C
VD = 28 V
Maximum Gain (dB)
30
25
20
IDQ = 1000 mA
15
IDQ = 400 mA
10
5
0
0
5
10
15
20
25
30
Frequency (GHz)
Datasheet: Rev D 01-22-16
© 2016 Qorvo
- 7 of 23 -
Disclaimer: Subject to change without notice
www.qorvo.com
TGF2023-2-20
100 Watt Discrete Power GaN on SiC HEMT
Model Load Pull Contours1
1Simulated
signal: 10% pulses.
Vd = 28 V, Idq = 400 mA
3GHz, Load-pull
Zs(fo) = 0.39+1.64iΩ
Zs(2fo) = 4Ω
Zs(3fo) = 4Ω
Zl(2fo) = 4Ω
Zl(3fo) = 4Ω
• Max Power is 50.3dBm
at Z = 2.923+0.938iΩ
Γ = -0.1347+0.1538i
• Max Gain is 22.2dB
at Z = 1.807+3.347iΩ
Γ = -0.0342+0.5961i
• Max PAE is 69.5%
at Z = 3.378+3.144iΩ
Γ = 0.0824+0.391i
21.8
21.3
20.8
69.2
66.2
63.2
3
2
1.8
1.6
1.4
1.2
1
50
0.9
0.8
0.7
0.6
0.5
50.2
49.8
Power
Gain
PAE
Zo = 4Ω
3dB compression referenced to peak gain
Datasheet: Rev D 01-22-16
© 2016 Qorvo
- 8 of 23 -
Disclaimer: Subject to change without notice
www.qorvo.com
TGF2023-2-20
100 Watt Discrete Power GaN on SiC HEMT
Model Load Pull Contours1
1Simulated
signal: 10% pulses.
Vd = 28 V, Idq = 400 mA
6GHz, Load-pull
0.6
Zs(fo) = 0.33+0.71i Ω
Zs(2fo) = 4Ω
Zs(3fo) = 4Ω
Zl(2fo) = 4Ω
Zl(3fo) = 4Ω
• Max Power is 50.2dBm
at Z = 2.088+1.37iΩ
Γ = -0.2508+0.2815i
• Max Gain is 15.1dB
at Z = 1.088+3.082i Ω
Γ = -0.1503+0.6966i
• Max PAE is 66%
at Z = 1.53+2.467iΩ
Γ = -0.2066+0.5383i
14.6
14.1
65.1
13.6
62.1
59.1
50.1
49.9
Datasheet: Rev D 01-22-16
© 2016 Qorvo
- 9 of 23 -
Power
Gain
PAE
2
1.8
1.6
1.4
1.2
1
0.9
Zo = 4Ω
3dB compression referenced to peak gain
0.8
0.7
0.6
0.5
0.4
49.7
Disclaimer: Subject to change without notice
www.qorvo.com
TGF2023-2-20
100 Watt Discrete Power GaN on SiC HEMT
Model Load Pull Contours1
1Simulated
signal: 10% pulses.
Vd = 28 V, Idq = 400 mA
6GHz, Load-pull
0.6
Zs(fo) = 0.33+0.71i Ω
Zs(2fo) = 4Ω
Zs(3fo) = 4Ω
Zl(2fo) = 4Ω
Zl(3fo) = 4Ω
• Max Power is 50.2dBm
at Z = 2.088+1.37iΩ
Γ = -0.2508+0.2815i
• Max Gain is 15.1dB
at Z = 1.088+3.082i Ω
Γ = -0.1503+0.6966i
• Max PAE is 66%
at Z = 1.53+2.467iΩ
Γ = -0.2066+0.5383i
14.6
14.1
65.1
13.6
62.1
59.1
50.1
49.9
Datasheet: Rev D 01-22-16
© 2016 Qorvo
- 10 of 23 -
Power
Gain
PAE
2
1.8
1.6
1.4
1.2
1
0.9
Zo = 4Ω
3dB compression referenced to peak gain
0.8
0.7
0.6
0.5
0.4
49.7
Disclaimer: Subject to change without notice
www.qorvo.com
TGF2023-2-20
100 Watt Discrete Power GaN on SiC HEMT
Model Load Pull Contours1
1Simulated
signal: 10% pulses.
Vd = 28 V, Idq = 400 mA
8GHz, Load-pull
0.6
Zs(fo) = 0.4+0.33i Ω
Zs(2fo) = 4Ω
Zs(3fo) = 4Ω
Zl(2fo) = 4Ω
Zl(3fo) = 4Ω
• Max Power is 50.2dBm
at Z = 1.554+1.357i Ω
Γ = -0.3593+0.3322i
• Max Gain is 12.3dB
at Z = 1.156+2.531i Ω
Γ = -0.2503+0.6137i
• Max PAE is 62.2%
at Z = 1.111+2.009i Ω
Γ = -0.3558+0.5328i
12.1
11.6
58.7
11.1
55.7
52.7
50.1
49.9
49.7
Power
Gain
PAE
Zo = 4Ω
3dB compression referenced to peak gain
Datasheet: Rev D 01-22-16
© 2016 Qorvo
- 11 of 23 -
Disclaimer: Subject to change without notice
www.qorvo.com
TGF2023-2-20
100 Watt Discrete Power GaN on SiC HEMT
Model Load Pull Contours1
1Simulated
signal: 10% pulses.
Vd = 28 V, Idq = 400 mA
10GHz, Load-pull
0.6
Zs(fo) = 0.33+0.14iΩ
Zs(2fo) = 4Ω
Zs(3fo) = 4Ω
Zl(2fo) = 4Ω
Zl(3fo) = 4Ω
0.5
• Max Power is 50.2dBm
at Z = 1.222+1.239i Ω
Γ = -0.4502+0.3442i
• Max Gain is 10.5dB
at Z = 1+2.034i Ω
Γ = -0.3728+0.5584i
• Max PAE is 58.4%
at Z = 0.875+1.674i Ω
Γ = -0.4678+0.5041i
10.1
9.65
9.15
56.1
53.1
50.1
50
49.8 49.6
Power
Gain
PAE
Zo = 4Ω
3dB compression referenced to peak gain
Datasheet: Rev D 01-22-16
© 2016 Qorvo
- 12 of 23 -
Disclaimer: Subject to change without notice
www.qorvo.com
TGF2023-2-20
100 Watt Discrete Power GaN on SiC HEMT
Model Load Pull Contours1
1Simulated
signal: 10% pulses.
Vd = 28 V, Idq = 1000 mA
3GHz, Load-pull
Zs(fo) = 0.38+1.58i Ω
Zs(2fo) = 4Ω
Zs(3fo) = 4Ω
Zl(2fo) = 4Ω
Zl(3fo) = 4Ω
• Max Power is 50.2dBm
at Z = 2.953+0.921i Ω
Γ = -0.1307+0.1498i
• Max Gain is 22.9dB
at Z = 1.874+3.467i Ω
Γ = -0.0101+0.5961i
• Max PAE is 68.5%
at Z = 3.425+3.053i Ω
Γ = 0.0784+0.379i
22.7
22.2
21.7
65.9
62.9
3
2
1.8
1.6
1.4
49.9
1.2
59.9
1
0.9
0.8
0.7
0.6
0.5
50.1
49.7
Power
Gain
PAE
Zo = 4Ω
3dB compression referenced to peak gain
Datasheet: Rev D 01-22-16
© 2016 Qorvo
- 13 of 23 -
Disclaimer: Subject to change without notice
www.qorvo.com
TGF2023-2-20
100 Watt Discrete Power GaN on SiC HEMT
Model Load Pull Contours1
1Simulated
signal: 10% pulses.
Vd = 28 V, Idq = 1000 mA
6GHz, Load-pull
Zs(fo) = 0.39+0.55i Ω
Zs(2fo) = 4Ω
Zs(3fo) = 4Ω
Zl(2fo) = 4Ω
Zl(3fo) = 4Ω
• Max Power is 50.2dBm
at Z = 2.066+1.359i Ω
Γ = -0.2558+0.2815i
• Max Gain is 15.7dB
at Z = 1.511+3.089i Ω
Γ = -0.1046+0.6192i
• Max PAE is 65.1%
at Z = 1.579+2.377i Ω
Γ = -0.2136+0.5172i
15.7
15.2
14.7
63.6
60.6
57.6
50.1
49.9
Datasheet: Rev D 01-22-16
© 2016 Qorvo
- 14 of 23 -
Power
Gain
PAE
2
1.8
1.6
1.4
1.2
1
Zo = 4Ω
3dB compression referenced to peak gain
0.9
0.8
0.7
0.6
0.5
49.7
Disclaimer: Subject to change without notice
www.qorvo.com
TGF2023-2-20
100 Watt Discrete Power GaN on SiC HEMT
Model Load Pull Contours1
1Simulated
signal: 10% pulses.
Vd = 28 V, Idq = 1000 mA
8GHz, Load-pull
0.6
Zs(fo) = 0.42+0.28i Ω
Zs(2fo) = 4Ω
Zs(3fo) = 4Ω
Zl(2fo) = 4Ω
Zl(3fo) = 4Ω
• Max Power is 50.1dBm
at Z = 1.56+1.344i Ω
Γ = -0.3593+0.3287i
• Max Gain is 13.1dB
at Z = 1.136+2.601i Ω
Γ = -0.2397+0.6278i
• Max PAE is 61.8%
at Z = 1.137+1.96i Ω
Γ = -0.3593+0.5187i
12.8
12.3
11.8
58.8
55.8
52.8
50.1
49.9
49.7
Power
Gain
PAE
Zo = 4Ω
3dB compression referenced to peak gain
Datasheet: Rev D 01-22-16
© 2016 Qorvo
- 15 of 23 -
Disclaimer: Subject to change without notice
www.qorvo.com
TGF2023-2-20
100 Watt Discrete Power GaN on SiC HEMT
Model Load Pull Contours1
1Simulated
signal: 10% pulses.
Vd = 28 V, Idq = 1000 mA
10GHz, Load-pull
0.6
Zs(fo) = 0.37+0.13iΩ
Zs(2fo) = 4Ω
Zs(3fo) = 4Ω
Zl(2fo) = 4Ω
Zl(3fo) = 4Ω
0.5
• Max Power is 50.2dBm
at Z = 1.227+1.23i Ω
Γ = -0.4502+0.3412i
• Max Gain is 11.2dB
at Z = 0.953+2.064i Ω
Γ = -0.3764+0.5735i
• Max PAE is 58.4%
at Z = 0.863+1.652i Ω
Γ = -0.4749+0.5011i
11.1
10.6
10.1
55.5
52.5
49.5
49.9
49.7 49.5
Power
Gain
PAE
Zo = 4Ω
3dB compression referenced to peak gain
Datasheet: Rev D 01-22-16
© 2016 Qorvo
- 16 of 23 -
Disclaimer: Subject to change without notice
www.qorvo.com
TGF2023-2-20
100 Watt Discrete Power GaN on SiC HEMT
Model Drive-up Data – 3 GHz
TGF2023-2-20 Gain and PAE vs. Output Power
3GHz, Vds =28V, Idq =400mA, 10% Duty Cycle, Power Tuned
Zs-fo = 0.39+1.64iΩ
Zs-2fo = 4Ω
Zs-3fo = 4Ω
Zl-fo = 2.92+0.94iΩ
Zl-2fo = 4Ω
Zl-3fo = 4Ω
21
20
19
18
70
22
60
21
50
40
20
19
30
18
17
20
17
16
10
16
15
39
40
41
42
43 44 45 46 47
Output Power [dBm]
48
49
50
0
51
15
39
100
Gain
90
PAE
80
23
22
21
20
19
Zs-fo = 0.38+1.58iΩ
Zs-2fo = 4Ω
Zs-3fo = 4Ω
Zl-fo = 2.95+0.92iΩ
Zl-2fo = 4Ω
Zl-3fo = 4Ω
70
22
60
21
50
40
20
19
20
17
16
10
16
43 44 45 46 47
Output Power [dBm]
Datasheet: Rev D 01-22-16
© 2016 Qorvo
48
49
50
30
Gain
PAE
20
10
40
41
42
43
44
45
46
Output Power [dBm]
47
48
0
49
90
17
42
40
100
18
41
50
24
30
40
60
25
18
15
39
70
23
Gain [dB]
24
PAE [%]
25
80
Zs-fo = 0.39+1.64iΩ
Zs-2fo = 4Ω
Zs-3fo = 4Ω
Zl-fo = 3.38+3.14iΩ
Zl-2fo = 4Ω
Zl-3fo = 4Ω
TGF2023-2-20 Gain and PAE vs. Output Power
3GHz, Vds =28V, Idq =1000mA, 10% Duty Cycle, Efficiency Tuned
TGF2023-2-20 Gain and PAE vs. Output Power
3GHz, Vds =28V, Idq =1000mA, 10% Duty Cycle, Power Tuned
Gain [dB]
90
0
51
15
39
- 17 of 23 -
80
Zs-fo = 0.38+1.58iΩ
Zs-2fo = 4Ω
Zs-3fo = 4Ω
Zl-fo = 3.43+3.05iΩ
Zl-2fo = 4Ω
Zl-3fo = 4Ω
70
60
50
40
30
Gain
PAE
20
10
40
41
42
43
44
45
46
Output Power [dBm]
47
48
0
49
Disclaimer: Subject to change without notice
www.qorvo.com
PAE [%]
Gain [dB]
22
100
24
23
Gain [dB]
23
25
PAE [%]
100
Gain
90
PAE
80
24
PAE [%]
25
TGF2023-2-20 Gain and PAE vs. Output Power
3GHz, Vds =28V, Idq =400mA, 10% Duty Cycle, Efficiency Tuned
TGF2023-2-20
100 Watt Discrete Power GaN on SiC HEMT
Model Drive-up Data – 6 GHz
80
Gain
72
PAE
64
20
18
64
56
17
56
16
48
16
48
15
40
15
40
14
32
13
24
13
12
16
12
11
8
11
Gain [dB]
17
10
39
40
41
42
43 44 45 46 47
Output Power [dBm]
48
49
50
56
Gain [dB]
48
Zs-3fo = 4Ω
15 Zl-fo = 2.07+1.36iΩ
42
43 44 45 46
Output Power [dBm]
8
47
48
49
0
50
40
80
Gain
PAE
19
72
18
64
Zs-fo = 0.39+0.55iΩ
Gain [dB]
17
Zs-fo = 0.39+0.55iΩ
41
16
20
PAE [%]
18
16 Zs-2fo = 4Ω
40
24
TGF2023-2-20 Gain and PAE vs. Output Power
6GHz, Vds =28V, Idq =1000mA, 10% Duty Cycle, Efficiency Tuned
80
Gain
72
PAE
64
19
32
Zs-fo = 0.33+0.71iΩ
Zs-2fo = 4Ω
Zs-3fo = 4Ω
Zl-fo = 1.53+2.47iΩ
Zl-2fo = 4Ω
Zl-3fo = 4Ω
10
39
0
51
TGF2023-2-20 Gain and PAE vs. Output Power
6GHz, Vds =28V, Idq =1000mA, 10% Duty Cycle, Power Tuned
20
14
72
17 Zs-2fo = 4Ω
16 Zs-3fo = 4Ω
56
15 Zl-2fo = 4Ω
40
14
32
48
Zl-fo = 1.58+2.38iΩ
Zl-3fo = 4Ω
Zl-2fo = 4Ω
14 Zl-3fo = 4Ω
32
13
24
13
24
12
16
12
16
11
8
11
8
10
39
40
41
42
43 44 45 46 47
Output Power [dBm]
Datasheet: Rev D 01-22-16
© 2016 Qorvo
48
49
50
0
51
10
39
- 18 of 23 -
40
41
42
43 44 45 46
Output Power [dBm]
47
48
49
PAE [%]
18
80
Gain
PAE
19
Gain [dB]
Zs-fo = 0.33+0.71iΩ
Zs-2fo = 4Ω
Zs-3fo = 4Ω
Zl-fo = 2.09+1.37iΩ
Zl-2fo = 4Ω
Zl-3fo = 4Ω
19
PAE [%]
20
TGF2023-2-20 Gain and PAE vs. Output Power
6GHz, Vds =28V, Idq =400mA, 10% Duty Cycle, Efficiency Tuned
PAE [%]
TGF2023-2-20 Gain and PAE vs. Output Power
6GHz, Vds =28V, Idq =400mA, 10% Duty Cycle, Power Tuned
0
50
Disclaimer: Subject to change without notice
www.qorvo.com
TGF2023-2-20
100 Watt Discrete Power GaN on SiC HEMT
Model Drive-up Data – 8 GHz
TGF2023-2-20 Gain and PAE vs. Output Power
8GHz, Vds =28V, Idq =400mA, 10% Duty Cycle, Power Tuned
56
15
56
14
48
14
48
13
40
13
40
12
32
11
24
10
16
9
8
8
39
40
41
42
43 44 45 46 47
Output Power [dBm]
48
49
50
17
Gain [dB]
15
Gain
72
PAE
64
PAE [%]
16
18
10
9
0
51
8
39
56
Gain [dB]
13
12
42
43 44 45 46
Output Power [dBm]
8
47
48
49
0
50
48
40
32
80
Gain
72
PAE
64
17
16
Gain [dB]
15
Zs-fo = 0.42+0.27iΩ
Zs-2fo = 4Ω
Zs-3fo = 4Ω
Zl-fo = 1.56+1.35iΩ
Zl-2fo = 4Ω
Zl-3fo = 4Ω
41
16
18
PAE [%]
16
14
40
24
TGF2023-2-20 Gain and PAE vs. Output Power
8GHz, Vds =28V, Idq =1000mA, 10% Duty Cycle, Efficiency Tuned
80
Gain
72
PAE
64
17
32
Zs-fo = 0.4+0.33iΩ
Zs-2fo = 4Ω
Zs-3fo = 4Ω
Zl-fo = 1.11+2.01iΩ
Zl-2fo = 4Ω
Zl-3fo = 4Ω
11
TGF2023-2-20 Gain and PAE vs. Output Power
8GHz, Vds =28V, Idq =1000mA, 10% Duty Cycle, Power Tuned
18
12
15 Zs-fo = 0.42+0.27iΩ
14 Zs-2fo = 4Ω
56
13 Zl-fo = 1.14+1.96iΩ
40
12
32
48
Zs-3fo = 4Ω
Zl-2fo = 4Ω
Zl-3fo = 4Ω
24
11
24
10
16
10
16
9
8
9
8
11
8
39
40
41
42
43 44 45 46 47
Output Power [dBm]
Datasheet: Rev D 01-22-16
© 2016 Qorvo
48
49
50
PAE [%]
16
80
Gain
72
PAE
64
Zs-fo = 0.4+0.33iΩ
Zs-2fo = 4Ω
Zs-3fo = 4Ω
Zl-fo = 1.55+1.36iΩ
Zl-2fo = 4Ω
Zl-3fo = 4Ω
17
Gain [dB]
TGF2023-2-20 Gain and PAE vs. Output Power
8GHz, Vds =28V, Idq =400mA, 10% Duty Cycle, Efficiency Tuned
80
0
51
8
39
- 19 of 23 -
40
41
42
43 44 45 46
Output Power [dBm]
47
48
49
PAE [%]
18
0
50
Disclaimer: Subject to change without notice
www.qorvo.com
TGF2023-2-20
100 Watt Discrete Power GaN on SiC HEMT
Model Drive-up Data – 10 GHz
TGF2023-2-20 Gain and PAE vs. Output Power
10GHz, Vds =28V, Idq =400mA, 10% Duty Cycle, Power Tuned
13
80
Gain
72
PAE
64
12
56
12 Zs-fo = 0.33+0.14iΩ
48
11 Zs-3fo = 4Ω
9
8
40
32
13
10
9
48
Zl-fo = 0.88+1.67iΩ
Zl-2fo = 4Ω
Zl-3fo = 4Ω
40
32
24
8
24
7
16
7
16
6
8
6
8
5
39
40
41
42
43 44 45 46 47
Output Power [dBm]
48
49
50
0
51
5
39
TGF2023-2-20 Gain and PAE vs. Output Power
10GHz, Vds =28V, Idq =400mA, 10% Duty Cycle, Power Tuned
13
12
11
10
9
80
Gain
72
PAE
64
15
56
12
48
11
Zs-fo = 0.37+0.13iΩ
Zs-2fo = 4Ω
Zs-3fo = 4Ω
Zl-fo = 1.23+1.23iΩ
Zl-2fo = 4Ω
Zl-3fo = 4Ω
40
32
41
42
43 44 45 46
Output Power [dBm]
47
48
49
0
50
80
Gain
72
PAE
64
14
13
Gain [dB]
14
40
TGF2023-2-20 Gain and PAE vs. Output Power
10GHz, Vds =28V, Idq =1000mA, 10% Duty Cycle, Efficiency Tuned
PAE [%]
15
Gain [dB]
56
Zs-2fo = 4Ω
10
Zs-fo = 0.37+0.13iΩ
Zs-2fo = 4Ω
Zs-3fo = 4Ω
Zl-fo = 0.86+1.65iΩ
Zl-2fo = 4Ω
Zl-3fo = 4Ω
56
48
40
9
32
8
24
8
24
7
16
7
16
6
8
6
8
5
39
40
41
42
43 44 45 46 47
Output Power [dBm]
Datasheet: Rev D 01-22-16
© 2016 Qorvo
48
49
50
PAE [%]
10
80
Gain
72
PAE
64
14
0
51
5
39
- 20 of 23 -
40
41
42
43 44 45 46
Output Power [dBm]
47
48
49
PAE [%]
Zs-fo = 0.33+0.14iΩ
Zs-2fo = 4Ω
Zs-3fo = 4Ω
Zl-fo = 1.22+1.24iΩ
Zl-2fo = 4Ω
Zl-3fo = 4Ω
11
15
Gain [dB]
Gain [dB]
14
PAE [%]
15
TGF2023-2-20 Gain and PAE vs. Output Power
10GHz, Vds =28V, Idq =400mA, 10% Duty Cycle, Efficiency Tuned
0
50
Disclaimer: Subject to change without notice
www.qorvo.com
TGF2023-2-20
100 Watt Discrete Power GaN on SiC HEMT
Model
A model is available for download from Modelithics (at http://www.modelithics.com/mvp/Qorvo&tab=3) by approved
Qorvo customers. The model is compatible with the industry’s most popular design software including Agilent ADS and
National Instruments/AWR applications. Once on the Modelithics web page, the user will need to register for a free
license before being granted the download.
Mechanical Drawing
Bond Pads
Pad No.
Description
Dimensions
1-16
2
Die Backside
Gate
Drain
Source / Ground
0.154 x 0.115
0.154 x 4.130
0.824 x 4.562
Notes:
1. Units: millimeters
2. Thickness: 0.100 mm
3. Die x,y size tolerance: ± 0.050 mm
Datasheet: Rev D 01-22-16
© 2016 Qorvo
- 21 of 23 -
Disclaimer: Subject to change without notice
www.qorvo.com
TGF2023-2-20
100 Watt Discrete Power GaN on SiC HEMT
Assembly Notes
Component placement and adhesive attachment assembly notes:
• Vacuum pencils and/or vacuum collets are the preferred method of pick up.
• Air bridges must be avoided during placement.
• The force impact is critical during auto placement.
• Organic attachment (i.e. epoxy) not recommended.
Reflow process assembly notes:
• Use AuSn (80/20) solder and limit exposure to temperatures above 300°C to 3-4 minutes, maximum.
• An alloy station or conveyor furnace with reducing atmosphere should be used.
• Do not use any kind of flux.
• Coefficient of thermal expansion matching is critical for long-term reliability.
• Devices must be stored in a dry nitrogen atmosphere.
Interconnect process assembly notes:
• Ball bonding is the preferred interconnect technique, except where noted on the assembly diagram.
• Force, time, and ultrasonics are critical bonding parameters.
• Aluminum wire should not be used.
• Devices with small pad sizes should be bonded with 0.0007-inch wire.
Disclaimer
GaN/SiC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed
during handling, assembly and test.
Bias-up Procedure
Bias-down Procedure
1. Set VG to -5 V.
2. Set ID limit to 1.1 A
3. Set VD to 28 V.
4. Adjust VG more positive until quiescent ID is 1 A.
5. Set ID limit to 8 A.
6. Apply RF signal.
1. Turn off RF signal.
Datasheet: Rev D 01-22-16
© 2016 Qorvo
2. Turn off VD and wait 1 second to allow drain capacitor
dissipation.
3. Turn off VG.
- 22 of 23 -
Disclaimer: Subject to change without notice
www.qorvo.com
TGF2023-2-20
100 Watt Discrete Power GaN on SiC HEMT
Product Compliance Information
ESD Sensitivity Ratings
Solderability
Compatible with gold/tin (320°C maximum reflow
temperature) soldering processes.
Caution! ESD-Sensitive Device
RoHs Compliance
GaN devices are susceptible to damage from Electrostatic
Discharge. Proper precautions should be observed during
handling, assembly and test.
This part is compliant with EU 2002/95/EC RoHS
directive (Restrictions on the Use of Certain Hazardous
Substances in Electrical and Electronic Equipment).
This product also has the following attributes:
• Lead Free
• Halogen Free (Chlorine, Bromine)
• Antimony Free
• TBBP-A (C15H12Br402) Free
• PFOS Free
• SVHC Free
Not HAST compliant.
Contact Information
For the latest specifications, additional product information, worldwide sales and distribution locations, and information
about Qorvo:
Web: www.qorvo.com
Email: [email protected] Fax:
Tel:
+1.972.994.8465
+1.972.994.8504
For technical questions and application information:
Email: [email protected]
Important Notice
The information contained herein is believed to be reliable. Qorvo makes no warranties regarding the information
contained herein. Qorvo assumes no responsibility or liability whatsoever for any of the information contained herein.
Qorvo assumes no responsibility or liability whatsoever for the use of the information contained herein. The information
contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information
is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain
and verify the latest relevant information before placing orders for Qorvo products. The information contained herein
or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any
other intellectual property rights, whether with regard to such information itself or anything described by such
information.
Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining
applications, or other applications where a failure would reasonably be expected to cause severe personal injury or
death.
Datasheet: Rev D 01-22-16
© 2016 Qorvo
- 23 of 23 -
Disclaimer: Subject to change without notice
www.qorvo.com