Äîìàøíåå çàäàíèå 2 äëÿ ïëàòíûõ ãðóïï ÈÁÌ. Çàäà÷à 1. Íàéòè àñèìïòîòû ãðàôèêà ôóíêöèè. Çàäà÷à 2. Ïðîâåñòè ïîëíîå èññëåäîâàíèå è ïîñòðîèòü ãðàôèê ôóíêöèè. Çàäà÷à 4. Íàéòè ïðîèçâîäíóþ Çàäà÷à 5. Íàéòè ïðîèçâîäíóþ yx0 yx0 íåÿâíîé ôóíêöèè F (x, y) = 0. ôóíêöèè, çàäàííîé ïàðàìåòðè÷åñêè. âàðèàíòà Çàäà÷à 1 Çàäà÷à 2 1 5x x−1 ln x x x2 e2y − y 2 e2x = 0 2 x2 + 5 + 2x x2 − 1 2x2 + 4x + 3 x2 + x + 1 y sin x − cos (x − y) = 0 3 x +x 2x − 1 exp(−x) 2x x + y = ex−y 4 3 x−2 −x2 + 5x − 6 x2 − 3x + 3 y tg(xy) − y 3 e2+x = 1 5 x−2 x+4 ln(x − 2) x−4 (x − y)2 + yex = 0 6 x 1 + x2 3x2 + x + 2 x2 + x + 1 sin yex + x2 e2y = 0 7 x2 − 1 x4 ln(1 − x) x cos(x2 + y) + sin (x + y 2 ) = 0 8 2 x+3 2x2 − 4x + 3 x2 − 3x + 1 sin y(x2 − 1) + x2 y + 3e2 = 0 ln(1 − x) −3 − x 2 − sin yxex + e2y = 0 9 x2 6 − 16 10 x2 x+4 x2 + 5x + 3 x2 + x + 1 11 x2 + 8x − 6 x exp (−x) x2 12 2x2 + x + 3 x+6 −x2 + 7x + 9 x2 − 3x + 3 13 2 2 x −4 ln2 x x Çàäà÷à 3 ln p y x2 + y 2 = arctg x y + sin x2 y − x = 0 ey 2 −1 − xy + 5 = 0 ln y − arctg 2x =0 y Çàäà÷à 4 ( √ x = 1 − t2 √ y = tg 1 + t2 3t2 + 1 x = 3t2 3 t y = sin +t 3 √ x = 2t − t2 1 y = p 3 (1 − t)2 ( x = arcsin (cos t) y = arccos (sin t) ( √ x = ln (t + t2 + 1) √ y = t t2 + 1 ( √ x = 2t − t2 y = arcsin (t − 1) ( x = ctg(2 exp (t)) y = ln (tg(exp (t))) x = ln (ctgt) 1 y = cos2 t ( x = arctg(exp (t/2)) p y = exp (t) + 1 r 1−t x = ln √ 1+t y = 1 − t2 1 x = ln √ 1 − t4 2 y = arcsin 1 − t 1 + t2 x = arctg1 − t2 t y = √ 1 − t2 ( √ x = arcsin ( 1 − t2 ) y = (arccos t)2 14 x2 + 1 2x + 3 x2 + 3x + 2 x2 + x + 1 15 x2 + 1 x x exp(1/x) 16 x+5 x2 − 1 −x2 − x + 3 x2 − 3x + 3 3x2 y 2 + sin y = 3y 17 x2 x2 − 4 ln(x − 2) 2x + 6 sin yex + x2 e2y = 0 18 1 3−x −x2 + 3x + 1 x2 + x + 1 19 x2 − 5x + 6 x 20 x2 − 4 x2 − 9 3x2 + x + 2 x2 + x + 1 21 1 1 − x2 ln2 x x2 22 1 − x3 x2 3x3 3x2 + 4x + 4 23 x2 1 −4 x2 exp 1 x exp x x3 sin yex + x2 e2y = 0 exy + 2 y = cos 3x x sin x =x+y y2 x2 − sin xy + xy = 0 √ x + y cos (xy) = 0 x2 + y 2 = 17 y 2 − x − ln tgy − x2 y =0 x x+1 =0 + 4x + 5 24 1 4 − x2 3x3 + x + 2 x2 + 2x + 3 exy = (x + 1)y x2 + y 25 1−x x2 ln x x3 − 1 2 cos(xy) = y 2 t x = √ 2 1 − t√ 2 y = ln 1 + 1 − t t x = (1 + cos2 t)2 cos t y = sin2 t ( x = ln 1 − t2 1 + t √ y = 1 − t2 x = arccos 1 t √ 1 y = t2 − 1 + arcsin t 1 x = ln t √ 2 y = ln 1 + 1 − t t ( √ x = arcsin t p √ y = 1+ t x = arcsin2 t t y = √ 1 − t2 √ x = t t2 + 1 √ 2 y = ln 1 + 1 − t t x = arctgt 2 y = ln 1 + t t+1 ( x = ln(1 − t2 ) √ y = arcsin 1 − t2 x = arctg t + 1 t−1 y = arcsin √1 − t2 r x = ln 1 − sin t 1 + sin t y = 1 tg2 t + ln cos t 2
© Copyright 2026 Paperzz