Prebell Rotations Rules for Rotations Practice Rotating About the

2/14/2017
Prebell
1. Describe the
transformation.
Rotations
2. Find the coordinates of the
image of the figure
𝑄 βˆ’1, βˆ’5 , 𝑅 βˆ’1, βˆ’1 , 𝑆 4, 0 ,
and 𝑇(4, βˆ’5) after a
reflection about the origin.
β€’ Rotation – change in orientation; turn about a
point called the center of rotation
β€’ The number of degrees rotated is the angle of
rotation.
Rules for Rotations
Partner Activity Introducing Rotations
β€’ The direction of rotation is important.
Counterclockwise Rotations
β€’ 90°: (π‘₯, 𝑦) β†’ (βˆ’π‘¦, π‘₯)
β€’ 180°: π‘₯, 𝑦 β†’ βˆ’π‘₯, βˆ’π‘¦
β€’ 270°: (π‘₯, 𝑦) β†’ (𝑦, βˆ’π‘₯)
Clockwise Rotations
β€’ 90°: (π‘₯, 𝑦) β†’ (𝑦, βˆ’π‘₯)
β€’ 180°: π‘₯, 𝑦 β†’ βˆ’π‘₯, βˆ’π‘¦
β€’ 270°: (π‘₯, 𝑦) β†’ (βˆ’π‘¦, π‘₯)
What do you notice?
β€’
β€’
Practice Rotating About the Origin
𝑀(βˆ’3, βˆ’2) rotated 90° CW
𝑄(βˆ’4, 6) rotated 180°
𝑁(0, βˆ’4) rotated 180°
𝑅(7, βˆ’1) rotated 270° CW
𝑃(1, 3) rotated 270° CCW
𝑆(5, 0) rotated 90° CCW
180° rotations are the same in any direction.
90° rotations and 270° rotations (in the opposite
direction) give the same image.
Shortcut
Plot the following points on your graph paper:
𝐴 1, 5
𝐡 2, 1
𝐢 (βˆ’3, βˆ’1)
1
2/14/2017
Shortcut
β€’ Rotate your paper in ¼ turns.
– Counterclockwise turns left ←
– Clockwise turns right β†’
90° – turn 1 time
180° – turn 2 times
270° – turn 3 times
360° – turn 4 times
(ends up back
where you started)
Practice Rotating About the Origin
Rotate 90° CCW
Rotate 180°
β€’ Identify each ordered pair using the new
(rotated) axes.
β€’ Turn your paper back to its original position.
β€’ Graph the image using the points you
identified by turning your paper.
HW: Rotations on a Coordinate Plane
β€’ Use Rotation Rules for Ordered Pairs (top half)
β€’ Use Shortcut for Graphs (bottom half)
2