H*13.1*L x := 2 RandomInteger@D - 1; p@n_D := Table@x, 8n<D; q@n_D := Accumulate@p@nDD; r@n_D := ListLinePlot@q@nDD; p@10D q@10D r@10D 81, 1, - 1, - 1, - 1, 1, 1, - 1, - 1, - 1< 8- 1, - 2, - 1, - 2, - 3, - 4, - 3, - 2, - 1, - 2< 2 1 2 4 6 8 10 100 200 300 400 500 -1 -2 r@500D -5 -10 -15 -20 -25 -30 -35 Show@Table@r@500D, 820<D, PlotRange ® 8- 50, 50<D 40 20 100 -20 -40 200 300 400 500 2 Chapt13.prob.nb fig1 = ListPlot@Variance@Table@q@10 000D, 81000<DD, PlotStyle ® YellowD 10 000 8000 6000 4000 2000 2000 4000 6000 8000 10 000 fig2 = Plot@x, 8x, 0, 10 000<, PlotStyle ® RedD 10 000 8000 6000 4000 2000 2000 4000 6000 8000 10 000 4000 6000 8000 10 000 Show@fig1, fig2D 10 000 8000 6000 4000 2000 2000 H*13.2*L x := 2 RandomInteger@D - 1; p@n_D := Table@8x, x<, 8n<D; q@n_D := Accumulate@p@nDD; r@n_D := ListLinePlot@q@nD, AspectRatio ® 1D; s@n_D := ListLinePlot@q@nD, AspectRatio ® Automatic, PlotRange ® 88- Sqrt@4 nD, Sqrt@4 nD<, 8- Sqrt@4 nD, Sqrt@4 nD<<D Chapt13.prob.nb p@10D q@10D r@10D 881, 1<, 81, 1<, 8- 1, 1<, 8- 1, 1<, 81, 1<, 8- 1, 1<, 8- 1, - 1<, 8- 1, 1<, 8- 1, - 1<, 8- 1, 1<< 88- 1, 1<, 80, 0<, 81, 1<, 80, 0<, 8- 1, - 1<, 80, - 2<, 81, - 1<, 82, 0<, 83, 1<, 82, 0<< -1 -2 -3 -4 -5 -6 -1.0 0.5 -0.5 1.0 1.5 2.0 r@5000D 100 80 60 40 20 -40 20 -20 -20 40 3 4 Chapt13.prob.nb Show@Table@s@5000D, 820<DD 100 50 -100 50 -50 -50 -100 100 Chapt13.prob.nb fig0 = ParametricPlot@Sqrt@2D Sqrt@5000D 8Cos@tD, Sin@tD<, 8t, 0, 2 Pi<, PlotStyle ® RedD; fig1 = ListPlot@Table@q@5000D@@5000DD, 81000<D, AspectRatio ® 1D; Show@fig1, fig0D 200 100 -200 100 -100 200 -100 -200 H*13.3*L H* def *L H* Nearlest Neibher *L nn@f_, p_D := Table@f@@Mod@i - 1 - p, NND + 1DD + f@@Mod@i - p, NND + 1DD, 8i, 1, NN<D; H* p = H0 or 1L for Heven or oddL site *L SeSo@f_, g_D := Table@If@EvenQ@iD, g@@Mod@i 2 - 1, NND + 1DD, f@@Mod@Hi - 1L 2, NND + 1DDD, 8i, 1, 2 NN<D; H* Heat Bath Method ; spin = 2Hn-12L = 1,-1 ; n=1,0 *L hbm@f_D := Table@RandomChoice@ 8E ^ HBB 2 Hf@@iDD - 1LL, E ^ H- BB 2 Hf@@iDD - 1LL< ® 81, 0<D, 8i, 1, NN<D; H* initial data *L NN = 30; BB = 1; Mag = 8<; Se = Table@RandomInteger@D, 8NN<D; 5 6 Chapt13.prob.nb Do@8 nnSe = nn@Se, 0D; So = hbm@nnSeD; nnSo = nn@So, 1D; Se = hbm@nnSoD; S = SeSo@Se, SoD; Mag = Append@Mag, Total@SD NN - 1D <, 8500<D ListLinePlot@MagD ArrayPlot@8S<D 0.6 0.4 0.2 100 200 300 400 500 -0.2 -0.4 -0.6 -0.8 H*13.4*L H* def *L NN = 2 MM; nn@s_, p_D := H* p=1 or 0 for even or odd *L Table@ s@@Mod@i - 2, NND + 1, Mod@j - 1, MMD + 1DD + s@@Mod@i - 1, NND + 1, Mod@j - Mod@i + p, 2D - 1, MMD + 1DD + s@@Mod@i - 1, NND + 1, Mod@j - Mod@i + p, 2D , MMD + 1DD + s@@Mod@i , NND + 1, Mod@j - 1, MMD + 1DD, 8i, 1, NN<, 8j, 1, MM<D; SeSo@f_, g_D := Table@ If@EvenQ@i + jD, f@@i, Ceiling@j 2DDD, g@@i, Ceiling@j 2DDDD, 8i, 1, NN<, 8j, 1, NN<D; hbm@s_D := Table@RandomChoice@8E ^ HBB 2 Hs@@i, jDD - 2LL, E ^ H- BB 2 Hs@@i, jDD - 2LL< ® 81, 0<D, 8i, 1, NN<, 8j, 1, MM<D; H* magnetization *L magnetization@B_D := H BB = B; Do@8 nnSe = nn@Se, 1D; So = hbm@nnSeD; nnSo = nn@So, 0D; Se = hbm@nnSoD; S = SeSo@Se, SoD; Mag = Append@Mag, Total@Total@SDD HNN MML - 1D; <, 81000<D; ListLinePlot@MagD L; H* initial data *L Clear@Se, So, S, MM, BB, kkD NN = 30; MM = 15; Se = Table@RandomInteger@D, 8NN<, 8MM<D; Mag = 8<; Chapt13.prob.nb magnetization@0D ArrayPlot@SD 0.05 200 -0.05 400 600 800 1000 7 8 Chapt13.prob.nb Se = Table@RandomInteger@D, 8NN<, 8MM<D; Mag = 8<; [email protected] ArrayPlot@SD 0.4 0.2 200 -0.2 -0.4 -0.6 400 600 800 1000 Chapt13.prob.nb Se = Table@RandomInteger@D, 8NN<, 8MM<D; Mag = 8<; [email protected] ArrayPlot@SD 0.95 0.90 0.85 0.80 200 400 600 800 1000 9 10 Chapt13.prob.nb -0.70 -0.75 -0.80 -0.85 -0.90 200 400 600 800 1000 H* B = 0 to 1 *L kk = 0; Se = Table@RandomInteger@D, 8NN<, 8MM<D; Mag = 8<; Do@8 kk = kk + 1; BB = kk 1000; nnSe = nn@Se, 1D; So = hbm@nnSeD; nnSo = nn@So, 0D; Se = hbm@nnSoD; S = SeSo@Se, SoD; Mag = Append@Mag, Total@Total@SDD HNN MML - 1D; <, 8800<D ListLinePlot@MagD Chapt13.prob.nb 1.0 0.8 0.6 0.4 0.2 200 400 600 800 200 400 600 800 -0.2 0.2 -0.2 -0.4 -0.6 -0.8 -1.0 11
© Copyright 2026 Paperzz