998 10–83. Solve Prob. 10–75 using Mohr`s circle.

10 Solutions 44918
1/28/09
4:22 PM
Page 998
© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
10–83.
Solve Prob. 10–75 using Mohr’s circle.
998
10 Solutions 44918
1/28/09
4:22 PM
Page 1000
© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
•10–85.
Solve Prob. 10–79 using Mohr’s circle.
1000
10 Solutions 44918
1/28/09
4:22 PM
Page 1001
© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
10–86.
Solve Prob. 10–80 using Mohr’s circle.
1001
10 Solutions 44918
1/28/09
4:22 PM
Page 1002
© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
10–87.
Solve Prob. 10–81 using Mohr’s circle.
1002
10 Solutions 44918
1/28/09
4:22 PM
Page 1005
© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
10–90. Determine the mass moment of inertia Ix of the
right circular cone and express the result in terms of the
total mass m of the cone. The cone has a constant density r.
y
y ⫽ –hr x
r
x
h
1005
10 Solutions 44918
1/28/09
4:22 PM
Page 1009
© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
z
10–94. Determine the mass moment of inertia Iy of the
solid formed by revolving the shaded area around the y axis.
The density of the material is r. Express the result in terms
of the mass m of the semi-ellipsoid.
a
2
z2 ⫽ 1
y ⫹ ––
––
2
a
b2
b
y
x
1009
8 Solutions 44918
1/27/09
1:51 PM
Page 688
© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
8–6. The 180-lb man climbs up the ladder and stops at the
position shown after he senses that the ladder is on the verge
of slipping. Determine the coefficient of static friction between
the friction pad at A and ground if the inclination of the ladder
is u = 60° and the wall at B is smooth.The center of gravity for
the man is at G. Neglect the weight of the ladder.
B
G 10 ft
u
3 ft
688
A
8 Solutions 44918
1/27/09
1:52 PM
Page 692
© 2010 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
8–10. The uniform 20-lb ladder rests on the rough floor
for which the coefficient of static friction is ms = 0.8 and
against the smooth wall at B. Determine the horizontal
force P the man must exert on the ladder in order to cause
it to move.
B
5 ft
8 ft
P
5 ft
A
6 ft
692