Fuels and energy heat mechanical work heat fuel mechanical work heat mechanical work light electric energy light sound Heatgenerators 2 Heatgenerators 3 Fuel composition 1 Fuel, air and flue gases fuel solid,liquid: C,H,S,O,N,H2O,ash gaseous: H2,CxHy,CO2,N2,... + flue gases N 2,O2,H2O,CO2,SO2 + air N 2,O2,(H2O,CO2,Ar,...) heat Q g =mg H i Heatgenerators 6 Heatgenerators 7 Combustion 2 Combustion - air C+O2 → CO 2 1kmol C+ 1kmol O2 → 1 kmol CO2 + 407353 kJ 12,011 kg C + 31,9988 kg O2 → 44,0098 kg CO2 + 407353 kJ 1kg C+ 2,6641 kg O2 → 3,6641 kg CO2 + 33915 kJ 2H 2 +O2 → 2H 2O 1kgH2 + 7,9370 kg O2 → 8,9370 kg H2O + 141800 kJ S+O2 → SO 2 1kgS+ 0,9981 kgO2 → 1,9981 kg SO2 + 10467 kJ requiredquantityofoxygen/air(kg/kgfuel) mO,min = 2,6641 wC + 7,9370 w H + 0,9981 wS − wO mO,min mA,min = 0 ,23 actualquantityofair(kg/kgfuel) mA = λ mA,min λ – airratio Heatgenerators 10 Combustion - air C+O2 → CO 2 1kmol C+ 1kmol O2 → 1 kmol CO2 + 407353 kJ 12,011 kg C + 31,9988 kg O2 → 44,0098 kg CO2 + 407353 kJ 1kg C+ 2,6641 kg O2 → 3,6641 kg CO2 + 33915 kJ 2H 2 +O2 → 2H 2O 1kgH2 + 7,9370 kg O2 → 8,9370 kg H2O + 141800 kJ S+O2 → SO 2 1kgS+ 0,9981 kgO2 → 1,9981 kg SO2 + 10467 kJ requiredmassflowrateofoxygen/air(kg/kgfuel) m & O,min = m & f mO,min m & A,min = m & f m A,min actualmassflowrateofair(kg/kgfuel) m &A =m & f mA = m & f λ mA,min Heatgenerators 11 3 Combustion - flue gases C+O2 → CO 2 1kmol C+ 1kmol O2 → 1 kmol CO2 + 407353 kJ 12,011 kg C + 31,9988 kg O2 → 44,0098 kg CO2 + 407353 kJ 1kg C+ 2,6641 kg O2 → 3,6641 kg CO2 + 33915 kJ 2H 2 +O2 → 2H 2O 1kgH2 + 7,9370 kg O2 → 8,9370 kg H2O + 141800 kJ S+O2 → SO 2 1kgS+ 0,9981 kgO2 → 1,9981 kg SO2 + 10467 kJ quantityofproducedfluegas(kg/kgfuel) mCO2 =3,6641wC carbondioxide mH2O =8,9370wH +wH2O water mSO2 =1,9981wS sulphurdioxide mN2 =wN +0,77mA,min nitrogen mair =(λ – 1)mA,min air=nitrogen+oxygen Heatgenerators 13 Combustion - flue gases C+O2 → CO 2 1kmol C+ 1kmol O2 → 1 kmol CO2 + 407353 kJ 12,011 kg C + 31,9988 kg O2 → 44,0098 kg CO2 + 407353 kJ 1kg C+ 2,6641 kg O2 → 3,6641 kg CO2 + 33915 kJ 2H 2 +O2 → 2H 2O 1kgH2 + 7,9370 kg O2 → 8,9370 kg H2O + 141800 kJ S+O2 → SO 2 1kgS+ 0,9981 kgO2 → 1,9981 kg SO2 + 10467 kJ quantityofproducedfluegas(kg/kgfuel) mfg =mCO2 +mH2O +mSO2 +mN2 +mair massflowrateofproducedfluegases(kg/s) m & fg = m & f m fg Heatgenerators 14 4 Combustion - flue gases CO2 H2 O SO2 N2 m CO2 m H2O m SO2 m N2th air m air = CO2 H2 O SO2 m CO2 m H2O m SO2 N2 m N2 O2 m O2 Heatgenerators 15 Combustion - example Fuel:biodiesel wC =77% wH =12% wO =11% mO ,min = 2,6641·0,77 + 7 ,9370·0 ,12 + 0 ,9981·0 − 0 ,11 = 2,89 kg/kg m A,min = 2,89 = 12,59kg/kg 0 ,23 m A = 1 ,1·12,59 = 13,84kg/kg m & A = 0,2·13,84 = 2,77kg/s Airratio: λ =1,1 Fuelmassflowrate: mg =0,2kg/s m CO2 = 3,6641·0,77 = 2,82 kg/kg m H2O = 8,9370·0,12 + 0 = 1,07 kg/kg m SO2 = 1,9981·0 = 0 kg/kg m N2 = 0 + 0,77·12,59 = 9,69 kg/kg m air = (1,1 – 1)·12,59 = 1,26 kg/kg m fg = 2,82 + 1,07 + 9,69 + 1,26 = 14,84 kg/kg m & fg = 0,2·14 ,84 = 2,97kg/s Heatgenerators 19 5 Combustion - heat C+O2 → CO 2 1kmol C+ 1kmol O2 → 1 kmol CO2 + 407353 kJ 12,011 kg C + 31,9988 kg O2 → 44,0098 kg CO2 + 407353 kJ 1kg C+ 2,6641 kg O2 → 3,6641 kg CO2 + 33915 kJ 2H 2 +O2 → 2H 2O 1kgH2 + 7,9370 kg O2 → 8,9370 kg H2O + 141800 kJ S+O2 → SO 2 1kgS+ 0,9981 kgO2 → 1,9981 kg SO2 + 10467 kJ releasedenergy- lowerandhigherheatingvalue(MJ/kgfuel) wO H i = 33,9 ⋅ wC + 121,4 ⋅ w H − + 10,5 ⋅ wS − 2,5 ⋅ w H2O 8 H s = H i + 2,5 ⋅ mH2O releasedheatflowrate(MW) Q& f = m & f ⋅ Hi Heatgenerators 21 Carbon dioxide VCO2 Vd ,0 , s maximumCO2 volumefractioninfluegases φ(CO2 ) = volumeofCO2 (Nm3/kgfuel) VCO2 = theor.volumeofdryfluegases(Nm3/kgfuel) V fg ,0 ,d = VCO 2 + VH2O + VSO2 massofCO2 perunitreleasedheat(kg/MJ) mCO2 ρ CO2 ,0 ˆ CO2 = m = 1,8563·wC mCO2 Hi Normalcubicmeter(Nm3)representsthequantity(mass)ofagasthatfillsavolume of1m3 atnormalconditions(T0 =0°C,p0 =1,01325bar).Atotherconditionsvolume mightchange,butthemassremainsconstant. Heatgenerators 24 6 Enthalpy of flue gases specificenthalpy(kJ/kgfg) h − h0 = c p T ⋅ (T − T0 ) T 0 h=cp·T h fg = T ⋅ ∑ (c p ⋅ w fg )i = ∑ (h ⋅ w fg )i heatflowrate(kW) Q& = m & fg ⋅ (h fg ,1 − h fg ,2 ) Q& = m & fuel ⋅ m fg ⋅ (h fg ,1 − h fg ,2 ) = =m & fuel ⋅ (m fg ⋅ h fg ,1 − m fg ⋅ h fg ,2 ) Q& = m & fuel ⋅ (H fg ,1 − H fg ,2 ) enthalpyoffluegases(kJ/kgfuel) H fg = ∑ (h ⋅ m )i Heatgenerators 27 Enthalpy of flue gases, Hfg - T diagram temperatura Td / °C 0 400 800 1200 1 600 2000 2 400 30 28 7 26 24 6 22 20 5 entalpija H d / (MJ/kgg ) 18 16 4 14 12 3 8 2 6 4 1 entalpija H d / (MJ/kgg) 10 2 0 0 -200 -100 0 100 200 300 400 te mpe ratura Td / °C Heatgenerators 28 7 Theoretical temperature of combustion energybalanceinfurnace: m & f Hi + m & f hf + m & a ha = m & fg h fg heatflowrateoffluegases heatflowrateofcombustionair sensibleheatflowrateoffuel(negligible) heatflowratereleasedfromfuel Hfg m & f Hi + m & f λ mA ,min ha = m & f m fg ,m h fg H i + mA ha = H fg ,th Hfg,th Tfg,th T Heatgenerators 31 Energy of flue gases composition CO 2 heat Q=md cp (T– T0) Q =mCO2 cp,CO2 (T– T0)+ steam water SO 2 + mw cp,w (T– T0)+ m s cp,s (T– T0)+m s (h” – h’)+ +mSO2 cp,SO2 (T– T0)+ +mN2 cp,N2 (T– T0)+ N2 +mO2 cp,O2 (T– T0) O2 Heatgenerators 32 8 Enthalpy of flue gases H s = H i + 2500 mH2O theoretical point after adiabatic combustion enthalpy decrease during coolingof flue gases enthalpy enthalpy in the temperature interval of condensation virtual enthalpy curve parallel move to the origin of the diagram virtual point after adiabatic combustion Hs Hi temperature Heatgenerators 33 9 Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko HEAT GENERATORS / FUELS AND COMBUSTION 4 Fuel properties 1) For a given fuel calculate the following stoichiometric parameters: a) lower and higher heating value b) minimal required quantity of oxygen and combustion air c) minimal quantity of dry and wet flue gases d) maximal fraction of CO2 in flue gases e) quantity of CO2 produced per unit released heat 2) Analyse the influence of excess air ratio on flue gas composition. Show the results in a diagram for excess air ratios from 1 to 5. 3) Draw the Hfg-T chart for flue gases for temperature range of 0 to 2000 °C and for various excess air ratios (from 1 to 2). 4) Find theoretical temperature of combustion when combustion air temperature is 0 °C. Graphically show the relation of theoretical temperature and excess air ratio (from 1 to 2). 5) Find fractions of combustible and incombustible mass of fuel and their ratio as well as ratio between fractions of carbon and hydrogen in the fuel. 6) Compare compositions of various fuel, show and comment noticable characteristics of the observed fuel compared to others. The report should include the purpose of the work, properties of fuel, calculation procedure and results. All diagrams should have appropriate notation on axes, legends etc. Results should have appropriate comments. Data Costa Mota Salema Simoes fuel composition SouthAfrica Indonesia Czech republic Slovenia wC = 65,9 % wH = 3,6 % wS = 0,6 % wO = 7,3 % wN = 1,6 % wp = 13,6 % wH2O = 7,4 % wC = 54,79 % wH = 3,91 % wS = 0,1 % wO = 13,9 % wN = 0,65 % wp = 0,7 % wH2O = 25,95 % wC = 44,5 % wH = 3,43 % wS = 1,1 % wO = 9,84 % wN = 0,66 % wp = 9,56 % wH2O = 30,94 % wC = 30,8 % wH = 2,6 % wS = 1,5 % wO = 12,5 % wN = 0,6 % wp = 32 % wH2O = 20 %
© Copyright 2026 Paperzz