Example1: Sketchandannotate the graph o fy = x ' - 2 x - 1 5 Note: whenquicklysketchinga quadraticgraph,the rootsand shapeC'happy"or "sad" face)are enough. If thegraphof a quadratic functionhasrootsat x = -L guessat itsequation andx5 5, a reasonable wouldbe = y (x + 1)(x- 5). )/ x' 4x 5, i.e.from However, asthediagram shows,therearemany parabolas whichpassthroughthesepoints,allof which belongto thefamily of functions f = k (x + 1) (x- 5). we needthe To findtheequation of the originalfunction, rootsandoneotherpointon thecurue(to allowusto determine thevalueof $. Exampfe2: Statethe equation of thegraphbelowin the formy = axz+ bx + c . Page35 of 82 Thediagramshowsthegraphsof two quadratic functions. If the graphof y = x2 is shiftedg unitsto the right, foflowed by runitsup,thenthegraph of y= (x-q)'+ r is obtained. Astheturningpointof f = x2 is (0, 0), it followsthatthe newcuruehasa turningpointat (q, r). ' ,'y= (x-q)z + r ta' Notethat asthe dottedgraphdoesnotcut the x- axis,we wouldnotbeableto findtheturningpointviafindingthe roots. A quadratic equation writtendsy = p (x + q)' + r is said to be in the completedsquareform. Example3: (i) Writethe following valueof in the formy- (x + q)2 + r andfindthe minimum (ii) Hencestatethe minimum valueof x. valueof yand thecorresponding a )Y = x ' + 6 x + L 0 b )Y = x 2 ' 8 x + 3 c )Y = x z ' 5 x d )Y = x ' ' 3 x + L Example4: Writey = 3x' + IZx + 5 in the f o r my = p ( x + q ) ' + r . Example5: Write)/ = 5 + IZx - x2 in the form y=p-(x+g)r. Page36 of 82 Example6: a) Write)/= x2 - Llx+ 28 in the form y = ( x + p ) 2+ g , valueof b) Hencefindthe maximum 18 Llx x2 +28 the square,or equations whichdo noteasilyfactorisecanbesolvedin two ways:(i) completing Quadratic (ii) usingthe quadraticformula.In fact,bothmethodsareessentially the same,asthe quadraticformulais obtainedby solving)/ = axz+ bx + c via completing the square(seep L49for proof!). Example7: Solve5x2- 3Ox- 18= 0 by: a) usingthequadratic formula b) completing the square Page37 df 82 are easilysolvedby makinga sketchof the equivalentquadraticfunction,and Quadraticinequations determiningthe regionsaboveor belowthe x- axis. Example 8: Findthe valuesof x for which: a) 2x2- 7x + 6 > 0 b)2x'-7x+6<0 First, sketch y = 2x' - 7x + 6 The Discriminant Roots of Usingthe quadraticformula,find the rootsof eachof the threequadraticequationsbelow. (i)Y=x'-4x+3 (ii)Y=x2-4x+4 (iii)Y=x2-4x+5 yetthe rootsarealldifferent. Thenature of the rootsis In eachequation, onlythevalueof cchanges, purelybythe partof theformulainsidethe squarerootsign,i.e.bz '4ac . determined (i), b' - 4ac> Q,andtheequation In equation hadtwo unequal(i.e.differentor disctincflroots. (iD,b2^-4ac= 0, andthe equation hadtwoequal roots (asxz - 4x + 4 = (x- 2) (x- 2)). In equation (iii), < In equation b' 4ac 0, andtheequation hadno real roots. Fory- axz + bx+ c, b2 -4acis knownas the discriminant. ,i:.;:t . . . b'- 4ac > o givesreal, unequalroots bz - 4ac = o gives real, qual roots bz - 4ac< o iives no reairoots Wheneveryou are asked about the nature of the roots of a guadratic eguation. you should alwavs usethe discriminant! Page38 of 82 the natureof the roots Example9: Determine 44x- 3) = 9 of the equation Example1O:Findthevalue(s)of p giventhat 2x2+ 4x+ p hasrealroots' of rgiventhatx2 + (r- 3)x + r = 0 hasno realroots. Exampfe11: Findthevalue(s) equal a lineanda culve,we (i) makecurveandlineequations To findthe pointsof contactbetween = points of of the to findthex- coordinates to makeRHS 0; and(iii)factorise eachother;(ii) rearrange equation). contact(i.e.findthe rootsof the rearranged by part(ii) above,we couldworkout obtained equation of the rearranged If we usedthediscriminant how many pointsof contactthereare betweenthe lineandthe curue.Thereare3 options: 1 o Two points of contact 2 distinct roots b2- 4ac> o commonusefor this techniqueis to show tangencybetweenlines and Page39 of 82 Erample 12: Showthat the liney = 3x - 13 is a tangentto the cUF/€)z= xz - 7x +L2, and find the coordinatesof the point of contact. Example13: Findtwo values of rn suchthaty- mx-7 is a tangent to y= x'+2x-3 PastPaperExample:Showthatthe rootsof (k- 2)x' - 3k x + 2k = -2x arealways real. QuadraticFunctions;TopicCheck st Topic Completing thesquare Ouadratic Ineouations Rootsusing E-4ac Tanqencvusinql/ - 4ac Ouestions 5. p 325,O L,2 c Exercise 8D.o 146.O 2; Exercise AIB Exercise 8D.o 147.O 4. 6: Exercise 5, o 326.O 3. 4 c Exercise 8F,p 149,Q 3 8I, p152,O 1, 2, 5 c Exercise 8H,p151,Q L,2; Exercise A/B Exercise8I, p 152,O 6, 8; Exercise8K, p 156,O 10, 12 c Exercise 81.o 155.O l,2 Done Help? Y/N Y/N Y/N Y/N Y/N Y/N Y/N Y/N Y/N Y/N Y/N Y/N Page40 of 82
© Copyright 2025 Paperzz