Math 1A - ICA #6 (11-30-16) Fall 2016 Section 3231 Instructor: John Kwon In-Class Assignment #6: Tricky Integrals - Solution INSTRUCTION: Do not use a calculator. Z 1. dx x ln x ln (ln x) Solution. We use u-substitution: Let u = ln x, so that du = Z dx = x ln x ln (ln x) Z 1 dx . Then x du . u ln u Now use the substitution again, this time with w = ln u, so that dw = Z du = u ln u Z 1 du . Then u dw = ln |w| + C = ln |ln u| + C = ln |ln(ln x)| + C . w Z 2. 0 ln √ 2 3 e2x dx e4x + 1 Solution. We use u-substitution. First, note that the given integral can be written as Z ln √ 3 2 0 e2x 1 dx = 4x e +1 2 ln Z √ 3 2e2x 2 (e2x )2 + 1 0 dx Let u = e2x , so that du = 2e2x dx. Then u = e2·0 = 1 For x = 0 : For x = ln √ 2 3 √ 3 2· ln 2 : u=e = eln √ 3 = √ 3 so the integral is calculated as follows: Z 0 ln √ 2 3 √ Z √3 1 du dx = 2 2 2 1 u +1 (e2x ) + 1 0 √3 i 1 1 h −1 √ = tan−1 u = tan 3 − tan−1 1 2 2 1 h i 1 π π 1 π π = − = · = . 2 3 4 2 12 24 e2x 1 dx = 4x e +1 2 Z ln 2 3 2e2x
© Copyright 2026 Paperzz