University of Leeds School of Mathematics CIVE 1619 Preparatory mathematics for engineers Solutions 3 1. (a) First look for solutions in the range 0◦ 6 θ 6 360◦ . If (x, y) is √ on the unit circle at 2 2 2 angle θ, then x = 1/2. Now x + y = 1 gives y = 3/4, so y = ± 3/2. Thus (x, y) can be one of the √ following: 3/2), at angle θ = cos−1 (1/2) = 60◦ , or (1/2, √ (1/2, − 3/2), at angle 360◦ − 60◦ = 300◦ . Solutions in the range 360◦ 6 θ 6 720◦ can be found by adding 360◦ to those already found, giving 360◦ + 60◦ = 420◦ and 360◦ + 300◦ = 660◦ . In all: 60◦ , 300◦ , 420◦ , 660◦ . (b) First look for solutions in the range 0◦ 6 θ 6 360◦ . If (x, y) is on the unit circle at angle θ, then y = −0.4. Now x2 + y 2 = 1 gives x2 = 0.84, so x = ±0.917. Thus (x, y) can be one of the following: (0.917, −0.4), at angle θ = 360◦ − sin−1 (0.4) = 336.4◦ , or (−0.917, −0.4), at angle 180◦ + sin−1 (0.4) = 203.6◦ . Now neither of these is in the required range, but subtracting 360◦ from each gives the required answer: −23.6◦ and −156.4◦ . (c) If (x, y) is on the unit circle at angle θ, then y/x = −1, √ so y = −x. Substituting in x2 + y 2 = 1 gives x2 + (−x)2 = 1, so 2x2 = 1, so x = ±1/ 2. Thus (x, y) can be one of the following: √ √ (1/ √ 2, −1/√2), at angle θ = 3π/4, or (−1/ 2, 1/ 2), at angle 2π − π/4 = 7π/4. Thus θ = 3π/4 or 7π/4. (In decimal form, 2.356 or 5.498 radians.) 2. (a) Write sec θ, cosec θ as fractions and put them over a common denominator. Then use sin2 θ + cos2 θ = 1: 1 1 sin2 θ + cos2 θ 1 + = = = sec2 θ cosec2 θ. 2 2 cos2 θ sin θ cos2 θ sin θ cos2 θ sin2 θ (b) (sin θ + cos θ)2 = sin2 θ + cos2 θ + 2 sin θ cos θ = 1 + 2 sin θ cos θ. Similarly, (sin θ − cos θ)2 = sin2 θ + cos2 θ − 2 sin θ cos θ = 1 − 2 sin θ cos θ. Adding these together gives sec2 θ + cosec2 θ = (sin θ + cos θ)2 + (sin θ − cos θ)2 = (1 + 2 sin θ cos θ) + (1 − 2 sin θ cos θ) = 2. (c) By the addition formula, cos(θ + 45◦ ) = cos θ cos 45◦ − sin θ sin 45◦ = √1 2 cos θ − √1 2 sin θ = √1 (cos θ 2 − sin θ). Thus cos2 (θ + 45◦ ) = 12 (cos θ − sin θ)2 = 12 (cos2 θ + sin2 θ − 2 sin θ cos θ) = 12 (1 − 2 sin θ cos θ) = 12 − sin θ cos θ. ECL/29–10–2004 (d) By the double angle formula, cos 2θ = 2 cos2 θ − 1. Thus 1 + cos 2θ 1 + (2 cos2 θ − 1) 2 cos2 θ cos2 θ = = = . 1 − cos 2θ 1 − (2 cos2 θ − 1) 2 − 2 cos2 θ 1 − cos2 θ Using 1 − cos2 θ = sin2 θ, we can write this as cos2 θ/ sin2 θ = cot2 θ. 3. We have sin(75◦ ) = sin(30◦ + 45◦ ) = sin 30◦ cos 45◦ + cos 30◦ sin 45◦ = 1 √1 2 2 √ + 3 √1 2 2 = √ 1+√ 3 2 2 √ = √ 2+ 6 4 = √ 1+√ 3 , 2 2 and cos(75◦ ) = cos(30◦ + 45◦ ) = cos 30◦ cos 45◦ − sin 30◦ sin 45◦ √ = 3 √1 2 2 − 1 √1 2 2 √ = 3−1 √ 2 2 √ = √ 6− 2 4 √ = 3−1 √ . 2 2 √ √ √ 3+1 (1 + 3)/2 2 √ = √ . If you want, you can simplify this by Thus tan(75 ) = √ ( 3 − 1)/2 √ 2 3−1 multiplying top and bottom by 3 + 1, giving √ √ √ √ ( 3 + 1)( 3 + 1) 3+2 3+1 ◦ √ tan(75 ) = √ = = 2 + 3. 3−1 ( 3 − 1)( 3 + 1) ◦ 4. First, sin 3θ = sin(θ + 2θ) = sin θ cos 2θ + cos θ sin 2θ. Now sin 2θ = 2 sin θ cos θ and cos 2θ = 1 − 2 sin2 θ, so sin 3θ = sin θ(1 − 2 sin2 θ) + cos θ(2 sin θ cos θ) = sin θ − 2 sin3 θ + 2 sin θ cos2 θ. Now use cos2 θ = 1 − sin2 θ to write this as sin θ − 2 sin3 θ + 2 sin θ(1 − sin2 θ) = sin θ − 2 sin3 θ + 2 sin θ − 2 sin3 θ = 3 sin θ − 4 sin3 θ. √ √ 2 + 33 = 10, and α√ is the angle for the point on the unit 5. (a) We have r = 1 √ √ circle (3/ 10, 1/ 10). Thus α = sin−1 (1/ 10). In decimal form this is r = 3.16 and α = 18.4◦ . q √ √ √ (b) r = (−8)2 + 102 = 164, and α is the angle for (10/ 164, −8/ 164). Thus √ α = − sin−1 (8/ 164). In decimal form this is r = 12.8 and α = −38.7◦ (or equivalently α = 321.3◦ ). (c) r = √ 22 + 0 = 2 and α is the angle for (0, 1). Thus α = 90◦ . ECL/29–10–2004 6. (a) 6x5 . (b) 30x14 . (c) The function can be written as 14 x = 14 x1 , so its derivative is 14 x0 = 14 . (d) 52 x3/2 . (e) √ − 52 x−3/2 . (f) 3 x = x1/3 , so its derivative is 13 x−2/3 . (g) 2x + 3. (h) 3x2 + 8x. (i) 6x − 5x−2 + 12 x−1/2 . 7. (a) The expression is of the form y = uv, where u = x5 and v = cos x. Then dv and dx = − sin x, so the product rule gives du dx = 5x4 dy du dv = v+u = 5x4 cos x − x5 sin x. dx dx dx (b) Apply the product rule with u = cos x and v = sin x. Then dy dv = cos x, so dx = − sin2 x + cos2 x. dx du dx = − sin x and √ (c) Apply the product rule with u = x and v = cos x + sin x. Then u = x1/2 , so √ dv du 1 −1/2 = 2x = 1/(2 x), and dx = − sin x + cos x, giving dx √ 1 dy = √ (cos x + sin x) + x(cos x − sin x). dx 2 x (d) The expression is of the form y = u/v where u = x2 + 1 and v = cos x. Then dv and dx = − sin x, so the quotient rule gives dy = dx du v dx du dx = 2x dv − u dx 2x cos x + (x2 + 1) sin x = . v2 cos2 x (e) Apply the quotient rule with u = x + 1 and v = x2 + x + 1. Then dv = 2x + 1, so dx du dx = 1 and dy (x2 + x + 1) − (x + 1)(2x + 1) x2 + 2x = = − . dx (x2 + x + 1)2 (x2 + x + 1)2 (f) Apply the quotient rule with u = sin x and v = sin x + 1. Then dv = cos x, so dx cos x(sin x + 1) − sin x cos x cos x dy = . = 2 dx (sin x + 1) (sin x + 1)2 du dx = cos x and (g) sec x = 1/ cos x, so apply the quotient rule with u = 1 and v = cos x. Then dv and dx = − sin x, so dy 0 − 1 × (− sin x) sin x = = . 2 dx cos x cos2 x This can be written as sec x tan x if desired. ECL/29–10–2004 du dx =0 (h) cot x = cos x/ sin x, so apply the quotient rule with u = cos x and v = sin x. Then du dv = − sin x and dx = cos x, so dx − sin2 x − cos2 x 1 dy = = − 2 = − cosec2 x. 2 dx sin x sin x 8. In all of these we use the chain rule. (a) We write y = cos u where u = 3x. Then dy du du dx = − sin u and = 3, so dy du dy = = (− sin u) × 3 = −3 sin 3x. dx du dx (b) We write y = sin u where u = x2 . Then dy du = cos u and du dx = 2x, so dy = (cos u) × 2x = 2x cos x2 . dx (c) We write y = sin u where u = x2 + x + 1. Then dy du = cos u and du dx = 2x + 1, so dy = (cos u) × (2x + 1) = (2x + 1) cos(x2 + x + 1). dx √ dy (d) We write y = u = u1/2 where u = 1 − x2 . Then du = 12 u−1/2 = 2√1 u and so 1 x dy = √ (−2x) = − √ . dx 2 u 1 − x2 (e) We write y = u5 where u = cos x. Then dy du = 5u4 and du dx = − sin x, so dy = 5u4 (− sin x) = −5 sin x cos4 x. dx (f) We write y = u10 where u = 3x2 + 1. Then dy du = 10u9 and dy = 10u9 × 6x = 60x(3x2 + 1)9 . dx ECL/29–10–2004 du dx = 6x, so du dx = −2x,
© Copyright 2025 Paperzz