MATH 155/GRACEY WORKSHEET/8.3 NAME _________________________ TRIGONOMETRIC INTEGRALS We will study techniques for evaluating integral of the form m n sin x cos xdx and m n sec x tan xdx GUIDELINES FOR EVALUATING INTEGRALS INVOLVING SINE AND COSINE 1. If the power of the sine is odd and positive, save one sine factor and convert the remaining factors to cosines. Then expand and integrate. convert to cosines using pythagorean identity sin odd 2 k 1 x cos n xdx save for du k 2 n 1 sin x cos x sin xdx k 1 cos x cos n x sin xdx 2 2. If the power of the cosine is odd and positive, save one cosine factor and convert the remaining factors to sines. Then expand and integrate. convert to sines using pythagorean identity m sin x cos odd 2 k 1 save for du k xdx sin m x cos 2 x cos1 xdx k sin m x 1 sin 2 x cos xdx 3. If the powers of both the sine and cosine are even and nonnegative, make repeated use of the identities sin 2 x 1 cos 2 x 2 and cos 2 x 1 cos 2 x 2 To convert the integrand to odd powers of the cosine. Then proceed as in guideline 2. GUIDELINES FOR EVALUATING INTEGRALS INVOLVING SECANT AND TANGENT 1. If the power of the secant is even and positive, save one secantsquared factor and convert the remaining factors to tangents. Then expand and integrate. convert to tangents using pythagorean identity even 2k sec save for du k 1 x tan n xdx sec 2 x tan n x sec 2 xdx 1 tan x 2 k 1 tan n x sec 2 xdx 2. If the power of the tangent is odd and positive, save one secanttangent factor and convert the remaining factors to secants. Then expand and integrate. convert to secants using pythagorean identity m sec x tan odd 2 k 1 save for du k xdx secm 1 x tan 2 x sec1 x tan xdx k sec x sec x 1 sec x tan xdx m 2 3. If there are no secant factors and the power of the tangent is even and positive, convert a tangent-squared factor to a secant-squared factor, then expand and repeat, if necessary. convert to secants using pythagorean identity n n2 2 tan xdx tan x tan x dx tan n 2 x sec 2 x 1 dx 4. If the integral is of the form sec m xdx , where m is odd and positive, use integration by parts! 5. If none of these techniques work, try converting to sines and cosines. INTEGRALS INVOLVING SINE-COSINE PRODUCTS WITH DIFFERENT ANGLES 1 cos m n x cos m n x 2 1 sin mx cos nx sin m n x sin m n x 2 1 cos mx cos nx cos m n x cos m n x 2 1 cos mx sin nx sin m n x sin m n x 2 sin mx sin nx 1. Integrate. a. 7 cos xdx b. 4 sin 3xdx c. 5 sec xdx d. 5 tan 2 x sec 2 xdx e. 4 2 tan x sec xdx f. g. sin 3x cos 2 x dx 6 x tan 2 dx
© Copyright 2026 Paperzz