Valence Technology Inc. A Brief Review of Valence Technology’s Phosphate Program (Saphion®) Valence Technology Inc. Valence Technology Inc. Where Safety meets Power by 12201 Technology Blvd., Suite 150, Austin, Texas, 78727, USA Jerry Barker and Yazid Saidi Pure ™ PO4WER Pure ™ PO4WER ICMAT2007: 4th International Conference on Materials for Advanced Technologies 2007, July 1-6, 2007, Singapore ICMAT2007: 4th International Conference on Materials for Advanced Technologies 2007, July 1-6, 2007, Singapore Introduction- Valence Technology Inc. Valence Technology Inc. Valence Technology Inc. has been working on Phosphate Active materials since the early 1990’s Specialists in Electrochemical and Solid-State Chemistry Has built up a large portfolio of lithium and sodium active materials – phosphates, condensed phosphates, fluorophosphates and other polyanions (100+ patents on active materials) www.jerrybarker.co.uk Valence needed a cost-effective and scalable process for synthesizing these materials at a commercial level Developed the Carbothermal Reduction (CTR) method for the preparation of active materials Today Valence makes all its active materials using this CTR approach – at up to Metric Tonne/day scale Jerry Barker Consultants Pure ™ PO4WER ICMAT2007: 4th International Conference on Materials for Advanced Technologies 2007, July 1-6, 2007, Singapore Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Why Phosphates? Discharge Voltage (V) Discharge Characteristics of Phosphate Materials Vanadium Phos. (LVP) Iron Phos. blend Vanadium Fluorophos. (LVPF) Cobalt Phosphate 5.0 4.0 3.0 2.0 0 100 200 300 400 500 600 Cathode Material Specific Energy (Wh/kg) Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 1 Why Phosphates: DSC on Charged Cathodes 800 600 400 Carbothermal Reduction 200 0 LFP LVPF LVP LCP Exotherm (J/g) Heat Flow (J/gr) 1000 LMO LCO LNO LNO 893 J/g LCO 570 LMO 335 LFP 124 J/g 100 200 Temperature (C) 300 400 Theoretical basis for safety advantages of phosphates Valence Technology, Inc. Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Carbothermal Reduction (CTR) Free Energy or Ellingham Diagrams 2C + O2 2 CO = increase in volume and therefore entropy. Carbon is unique in that CO free energy of formation becomes increasingly negative as the temperature increases – i.e. more stable at high temperatures. Implications: Carbon can reduce any oxide provided a high enough temperature can be reached. Example: Na extraction: Top: Low affinity for oxygen – easy to reduce; Bottom: High affinity for oxygen – difficult to reduce Na2CO3 (liquid) + 2 C (solid) → 2 Na (vapor) + 3 CO (gas) Carbothermal Reduction (CTR) technique utilizes an in-situ reducing agent while leaving behind an embedded conductive network. Carbon monoxide formed during the high temperature synthesis both promotes further reduction and deposits carbon “nanoparticles” Net result: precursor carbon is finely distributed throughout and on surface of final product. Determines the relative ease of reducing of a given metallic oxide to the metal using carbon Determines the partial pressure of oxygen that is in equilibrium with a metal at a given temperature C + O2 CO2 2 C + O2 2 CO Valence Technology, Inc. But it tells us nothing about the kinetics of these reactions Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Iron Blast Furnace Fe2+/3+ Fe2+ Fe0 Process „borrowed‟ from the Extractive Metallurgy Industry Uses a particulate carbon to „reduce in‟ the metal ion. Potential for use with cheap precursors (Fe 2O3, V2O5, EMD etc) Residual carbon forms a highly conductive composite product Use same carbon as typical in Electrode Formulations (Super P) Valence Technology uses CTR to make all its active materials – at up to the Metric Tonne/day scale. Examples: Take Home Message: Intermediate oxidation states: ICMAT2007, Singapore July 1-7, 2007 Characteristics of Carbothermal Reduction Reaction Mechanisms: 3 Fe2O3 + CO 2 Fe3O4 + CO Fe3O4 + CO 3 FeO + CO2 FeO + CO Fe + CO2 ICMAT2007, Singapore July 1-7, 2007 3 LiH2PO4 + V2O5 + C Li3V2(PO4)3 + 3 H2O + CO Fe3+ Fe2+ Mn3+ Mn2+ V5+ V3+ Mo6+ Mo4+ etc. LiH2PO4 + 0.5 Fe2O3 + 0.5 C LiFePO4 + H2O + 0.5 CO LiH2PO4 + 0.5 Mn2O3 + 0.5 C LiMnPO4 + H2O + 0.5 CO 0.5 V2O5 + (NH4)2HPO4 + C VPO4 + 2 NH3 + H2O + 0.5 CO Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 2 CTR: A Schematic Representation SEM of Carbothermal Material lithium salt Before reaction: Mixture of carbon, metal oxide, phosphate and lithium salts Metal Oxide The CO produced promotes reduction while residual carbon remains as carbon “nanoparticles” Metal Oxide carbon Lithium Metal Phosphate starts to form as the oxide is reduced Lithiated Metal Phosphate Net result: as the product is formed, precursor carbon is distributed throughout and on surface of final product ICMAT2007, Singapore July 1-7, 2007 Valence Technology, Inc. Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 SEM of Carbothermal Material -LiV2O5 0.5 Li2CO3 + 0.5 V2O5 + 0.5 C LiV2O5 + 0.5 CO2 + 0.5 CO Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Valence Technology, Inc. Life Cycling of Li // -LiV2O5 Li//-LiV2O5 C/5 Rate, 2.80-3.80 V 4.0 400 3.5 3.0 2.5 2.0 1.5 1.0 0.5 150 Specific Discharge Capacity (mAhr/g) 500 Differential Capacity, dQ/dV [C/V] + Electrode Potential [V vs. Li/Li ] x in LixV2O5 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 4.5 0 300 200 Extraction 100 0 -100 Insertion -200 -300 -400 0 25 50 75 100 ICMAT2007, Singapore July 1-7, 2007 125 150 Cathode Specific Capacity [mAh/g] -500 1.0 1.5 2.0 2.5 3.0 3.5 4.0 + Electrode Potential [V vs. Li/Li ] 125 100 75 23C 60C 50 25 0 0 100 200 300 400 500 600 Cycle # J. Barker et al. J. Electrochem. Soc.150, A1267, (2003) Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 3 Graphite//-LiV2O5 4.5 2000 4.0 1500 Differential Capacity, dQ/dV [C/V] 3.5 Cell Voltage [V] 3.0 2.5 2.0 1.5 1.0 Charge 500 0 -500 Discharge -1000 LiH2PO4 + 0.45 Fe2O3 + 0.1 Mg(OH)2 + 0.45 C LiFe0.9Mg0.1PO4 + 1.1 H2O + 0.45 CO -1500 0.5 0 LiFe(Mg)PO4 1000 0 25 50 75 100 125 150 -2000 1.0 Cathode Specific Capacity [mAh/g] 1.5 2.0 2.5 3.0 3.5 4.0 Cell Voltage [V] J. Barker et al. J. Electrochem. Soc.150, A1267, (2003) Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Li//LiFe1-xMgxPO4 Olivine - LiFe1-xMgxPO4 Fe and Mg occupy the same crystallographic position Controlled morphology and particle size give rise to fast electrode kinetics 150-170 mAh/g @ 3.45 V vs. Li Metric Tonne production 4.5 800 4.0 600 3.5 Electrode Potential [V vs. Li] Framework comprises PO4 tetrahedra and MO6 octahedra Differential Capacity, dQ/dV [C/V] 3- Dimensional Framework Structure 3.0 2.5 2.0 1.5 1.0 0 20 40 60 80 100 120 140 160 Cathode Specific Capacity [mAh/g] Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 200 0 -200 -400 -600 0.5 0 400 -800 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Electrode Potential [V vs Li] Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Capacity Graphite//LiFe1-xMgxPO4 – 18650 cycling 110 100 90 80 70 60 50 40 30 20 10 0 Li3V2(PO4)3 3 LiH2PO4 + V2O5 + C Li3V2(PO4)3 + 3 H2O + CO 0 100 200 300 400 500 600 700 800 900 1000 1100 Cycle Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 4 Structure of Li3V2(PO4)3 Li//Li3V2(PO4)3 Three distinct crystallographic sites for Li+ High Li ion mobility gives rise to fast insertion kinetics 5.0 300 4.5 250 4.0 200 Differential Capacity, dQ/dV [C/V] Framework comprises PO4 tetrahedra and slightly distorted MO6 octahedra Electrode Potential [V vs. Li] 3- Dimensional Framework Structure 3.5 3.0 2.5 2.0 1.5 1.0 All 3 Li ions extractable generating a specific capacity close to theoretical (197 mAh/g) 0.5 0 150 100 50 0 -50 -100 -150 0 50 100 150 200 Cathode Specific Capacity [mAh/g] -200 2.5 3.0 3.5 4.0 4.5 5.0 Electrode Potential [V vs Li] Acknowledgements: Profs. Goodenough, Delmas, Gopalakrishnan Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Graphite//Li3V2(PO4)3 5 Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Li3V2(PO4)3 Lithium-ion cells: Cycling 250 200 4 Differential Capacity, dQ/dV [C/V] 184 mAh/g Cell Potential [V] 167 mAh/g 3 2 1 150 100 50 0 -50 -100 0 0 50 100 150 200 Cathode Specific Capacity [mAh/g] -150 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Cell Potential [V] Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Fluorophosphate - LiVPO4F Framework Triclinic Structure related to the minerals, Amblygonite LiAlPO4F and Tavorite LiFePO4OH LiVPO4F Structure comprises a 3D framework built up from PO4 tetrahedra and MO4F2 octahedra Representation left is shown along the c-axis 0.5 V2O5 + (NH4)2HPO4 + C VPO4 + 2 NH3 + H2O + 0.5 CO V located in the MO4F2 octahedra LiF + VPO4 LiVPO4F Electrochemistry suggests 2 sites for the Li ions Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 5 Li//LiVPO4F Refined XRD Data for LiVPO4F (Triclinic) 5.0 300 4.5 a = 5.1658(8)Å b = 5.3034(8)Å c = 7.4945(2)Å = 66.917(8)o = 66.994(7)o = 81.619(9)o Cell vol. = 173.85(5) Å3 200 Differential Capacity, dQ/dV [C/V] Electrode Potential [V vs. Li] 4.0 3.5 3.0 2.5 2.0 1.5 1.0 100 0 -100 -200 0.5 0 0 -300 2.5 20 40 60 80 100 120 140 160 Cathode Specific Capacity [mAh/g] 3.0 3.5 4.0 4.5 5.0 Electrode Potential [V vs Li] Theoretical Capacity - 155 mAh/g Reversible Specific Capacity!! Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Graphite//LiVPO4F 5.0 Valence Technology, Inc. LiVPO4F vs. LCO: Lithium-ion Cells 5.0 300 4.5 4.5 200 Cell Voltage [V] 3.5 3.0 2.5 2.0 1.5 1.0 100 0 -100 4.06 V 3.76 V 3.5 LiCoO2 3.0 2.5 2.0 1.5 1.0 -200 0.5 0.5 0 LiVPO4F 4.0 RCB Cell Voltage [V] Differential Capacity, dQ/dV [C/V] 4.0 ICMAT2007, Singapore July 1-7, 2007 0 20 40 60 80 100 120 140 160 Cathode Specific Capacity [mAh/g] -300 2.0 0 2.5 3.0 3.5 4.0 4.5 5.0 0 2 4 6 Cell Voltage [V] 8 10 12 140 mAh/g Reversible Specific Capacity!! Valence Technology, Inc. 14 16 18 Time on Test [h] J. Barker et al. Solid State Ionics 177, 2635, (2006) ICMAT2007, Singapore July 1-7, 2007 LiVPO4F Lithium-ion cells: Cycling Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 LiVPO4F Lithium-ion cells: Latest Cycling Cathode Specific Capacity [mAh/g] 160 140 120 100 80 60 40 20 0 0 20 40 60 80 100 120 140 160 180 200 Cycle Number Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 6 Fluorophosphate - Na3V2(PO4)2F3 Framework Tetragonal Structure built up from [PO4] tetrahedra and [VO4F2] bi-octahedra with bridging Fluorine. Na3V2(PO4)2F3 Representation left is shown along the a-axis V in the MO4F2 octahedra Electrochemistry suggests 3 sites for the Na ions 0.5 V2O5 + (NH4)2HPO4 + C VPO4 + 2 NH3 + H2O + 0.5 CO 3 NaF + 2 VPO4 Na3V2(PO4)2F3 J. Barker et al. Solid State Ionics 177, 1495, (2006) Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Valence Technology, Inc. Refined Structure - Na3V2(PO4)2F3 ICMAT2007, Singapore July 1-7, 2007 Li//Na3V2(PO4)2F3 5.0 40 4.5 30 Differential Capacity, dQ/dV [C/V] Electrode Potential [V vs. Li] 4.0 3.5 3.0 2.5 2.0 1.5 1.0 20 10 0 -10 (b) -20 (a) 0.5 0 0 20 40 60 80 100 120 140 160 180 Cathode Specific Capacity [mAh/g] -30 2.5 3.0 3.5 4.0 4.5 5.0 Electrode Potential [V vs Li] Simple Analytical Tool: weigh the cathode! Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Li//Na3V2(PO4)2F3 5.0 40 4.5 Differential Capacity, dQ/dV [C/V] Electrode Potential [V vs. Li] 3.5 3.0 2.5 2.0 1.5 1.0 20 10 0 -10 -20 -30 0.5 0 Novel Battery Applications 30 4.0 0 20 40 60 80 100 120 140 Cathode Specific Capacity [mAh/g] Valence Technology, Inc. -40 2.5 3.0 3.5 4.0 4.5 5.0 Electrode Potential [V vs Li] ICMAT2007, Singapore July 1-7, 2007 Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 7 Alternate Cell Configurations LITHIUM-ION Graphite / Li electrolyte / Li cathode Symmetrical Lithium-ion Cells SYMMETRICAL LITHIUM-ION LiVPO4F / Li electrolyte / LiVPO4F SODIUM-ION Hard Carbon / Na electrolyte / Na cathode HYBRID-ION Graphite / Li electrolyte / Na Cathode Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Symmetrical LiVPO4F Lithium-ion Cells Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Li//LiVPO4F - Dual Plateau Behavior Concept 5 Use the same active material as both anode and cathode 150 100 Simplicity of manufacture and use (single electrode coating) Intrinsically safe: bullet-proof technology Very low cost Ideally suited for large format applications Bi-polar: Charge in either direction Differential Capacity, dQ/dV [C/V] Electrode Potential [V vs. Li] 4 3 2 1 50 0 -50 -100 -150 -200 0 -200-150-100 -50 Anode = Cathode = LiVPO4F: 150 mAh/g 0 50 100 150 200 Cathode Specific Capacity [mAh/g] Electrolyte: 1M LiPF6 in EC/DMC -250 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Electrode Potential [V vs. Li] J. Barker et al. Electrochem. Solid-State Chem. 8, A285, (2005) Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 LiVPO4F//LiVPO4F Lithium-ion Cells 3.0 200 150 Differential Capacity, dQ/dV [C/V] RCB Potential [V] 2.5 2.0 1.5 1.0 100 Sodium-ion Cells 50 0 -50 -100 160 -150 0.5 0 0 20 40 60 80 100 120 140 160 Cathode Specific Capacity [mAh/g] -250 0.5 1.0 1.5 2.0 2.5 RCB Potential [V] 3.0 3.5 Cathode Specific Capacity [mAh/g] 140 -200 120 100 80 60 40 20 0 J. Barker et al. Electrochem. Solid-State Chem. 8, A285, (2005) Valence Technology, Inc. 0 10 20 30 40 50 60 70 Cycle Number ICMAT2007, Singapore July 1-7, 2007 Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 8 Sodium-ion Batteries Sodium-ion: Hard Carbon/Na+/Na3V2(PO4)2F3 Concept 5 5 4 4 Cell Voltage [V] An enabling technology Energy Density similar to lithium-ion Anode: Hard carbon Cell Voltage [V] Sodium-ion: A safer/cheaper alternative to lithium-ion technology? 3 2 1 82 mAh/g 79 mAh/g 3 78 mAh/g 2 1 Electrolyte: 1M NaPF6 in EC/DMC 0 0 Cathode: Na insertion material 10 20 30 40 50 60 70 80 90 0 100 0 50 Cumulative Cathode Specific Capacity [mAh/g] 100 150 200 250 300 Cumulative Specific Capacity [mAh/g] Anode Reaction: Reversible Na+ insertion J. Barker et al. Electrochem. Solid-State Chem. 6, A1, (2003) Cathode Reaction: Reversible Na+ insertion Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Hybrid-ion Batteries Concept Hybrid-ion: An enabling technology - many new cell chemistries Key Feature: Fully lithiated graphite is stable in a Na electrolyte Hybrid-ion Cells Anode: Graphite (but can also use e.g. Li4Ti5O12) Electrolyte: 1M LiPF6 in EC/DMC Cathode: Na+ insertion material Anode Reaction: Reversible Li+ insertion Cathode Reaction: Reversible Na+ insertion (initially) Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Hybrid-ion: Graphite /Li+/Na3V2(PO4)2F3 5.0 140 Cathode Specific Capacity [mAh/g] Differential Capacity, dQ/dV [C/V] 20 Cell Voltage [V] 4.0 3.5 3.0 2.5 2.0 10 0 -10 -20 1.5 0 20 40 60 80 100 120 140 Cathode Specific Capacity [mAh/g] -30 2.5 3.0 3.5 4.0 4.5 5.0 120 C/2 Rate 2C Rate 100 80 60 40 20 0 0 Cell Voltage [V] J. Barker et al. Electrochem. Solid-State Chem. 9, A190, (2006) Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Hybrid-ion: Graphite /Li+/Na3V2(PO4)2F3 30 4.5 1.0 Valence Technology, Inc. 20 40 60 80 100 120 Cycle Number J. Barker et al. Electrochem. Solid-State Chem. 9, A190, (2006) ICMAT2007, Singapore July 1-7, 2007 Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 9 Hybrid-ion: Li4Ti5O12/Li+/Na3V2(PO4)2F3 Hybrid-ion: Li4Ti5O12/Li+/Na3V2(PO4)2F3 5.0 140 3.5 80 3.0 60 Cathode Specific Capacity [mAh/g] Na3V2(PO4)2F3 4.5 Differential Capacity, dQ/dV [C/V] 4.0 2.5 3.0 Cell Voltage [V] Electrode Potential [V vs. Li] 3.5 2.5 2.0 2.0 1.5 1.0 1.5 40 20 0 -20 -40 Li4Ti5O12 0.5 1.0 0 0.5 -60 0 25 50 75 100 125 150 Cathode Specific Capacity [mAh/g] 0 0 25 50 75 100 125 150 175 -80 1.0 1.5 2.0 2.5 3.0 120 Li Eelectrolyte 100 2Na/1Li Electrolyte 80 60 40 20 3.5 Cell Voltage [V] 0 200 Active Material Specific Capacity [mAh/g] Valence Technology, Inc. 40 60 80 100 Cycle Number ICMAT2007, Singapore July 1-7, 2007 Other Phosphates – but no time to mention!! Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Summary: Phosphates for Lithium-ion Both sloping and flat discharge profiles are possible Li2MPO4F (US#6810686 + others) depending on the metal combinations and structure. Carbothermal Reduction – low cost processing, scalable Na2MPO4F (US#6810686 + others) Through the use of preparative methods exceptional life LiVPO4.OH (US#6777132) cycling and high rate performance may be attained. LiVP2O7 Phosphate materials have demonstrated superior safety characteristics. β-LiVOPO4 Applicability into new battery chemistries: sodium-ion, New Active Phosphate Phases – ca.150 mAh/g, 4 V vs. Li average, sloping and flat voltage profiles Valence Technology, Inc. 20 ICMAT2007, Singapore July 1-7, 2007 hybrid-ion, symmetrical lithium-ion etc. Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 Thank you for your attention! www.valence.com www.jerrybarker.co.uk Valence Technology, Inc. ICMAT2007, Singapore July 1-7, 2007 10
© Copyright 2026 Paperzz