SUMMATION FORMULAE FOR MULTINOMIAL COEFFICIENTS SELMO TAUBER Portland State College, Portland, Oregon 1. INTRODUCTION In [ 1] we have given some h i s t o r i c a l background to the m u l t i n o m i a l coefficients and proved some of the b a s i c s u m m a t i o n f o r m u l a e . More of the s u m m a t i o n formulae can be found in [ 2 ] . In this p a p e r we shall prove additional r e l a t i o n s involving m u l t i n o m i a l coefficients. Some of t h e s e can be c o n s i d e r e d a s g e n e r a l i z a t i o n s of c o r r e s p o n d i n g f o r m u l a e for binomial coefficients. 2. We shall r e f e r to [3] for t h e s e f o r m u l a e . FIRST SET OF FORMULAE In o r d e r to simplify the notation used in [l] , at least for the proof, we shall w r i t e n n N:/n ks: = ( and, for, ( k k V 8=1 k1+k-+.-..+k k k N Z = N+l, \ - l ), k ' " " with, n s kg = N , 8=1 we shall have the simplified notation k k ) = [N.(k.-l),k ] . Under t h e s e conditions equation (6) of [ l ] can be w r i t t e n n (1) 2 For [N,(k.-l),kn] = [N+l,kn] . j=l 0 = p = n, we can w r i t e (1) in the form p-1 2[N.(krl).kpfkn]+[N,kp-lfkn]+ j=l n X [N,kp5(krl),kn] j=p+l = [~N+1, k , k 1 L p n J and s i m i l a r r e l a t i o n s for . N - l , N-2, aso , N-q, . . . , N-k , thus, P [LN - l , (k.-l),k - l , k n Jl + [LN - l , k p -2,k n J1+ S fLN - l , k p - l , ( k .j - l ) , k n1J j ' p j=l r , , , -i J=P+1 95 96 SUMMATION FORMULAE FOR p-1 1 [N-q,(kj-l)Ap-q,kjH{N-q,kp-q-l,kn]+ j=l n 1 [N-q, k p - q , ( k . - l ) , k j j=p+l = [N-q+l,k p-1 -q.kj n 2 [ N - k , (k.-l), 0,kn]+ j=l 2 J=P By adding the f i r s t q April [N-.k , 0 , ( k - l ) , k n ] = [ N - k + l , 0 , k n ] +1 q equations and simplifying we obtain "p-1 n 2 2 [NTQ, ( k . - l ) , k -a, k ] + 2 [N-a, k - a , ( k . - l ) , k 1 a=0 J = l J=P+1 o r , using the c l a s s i c a l notation, q rp-1 (2) N-a I ( K 1 , K 0 , 9 . . , K . . . , K . - l , l c . - , # . . , K - a, . . . , K, + 1 L j-i j j+1 p n 2 a=0| x .= ( +1 - k N a " k l' 2' kp-a, ) ....k.^.k.-l.k..^....,^ N+l N-q ( k, , k-j, o o » , k , • . . , k k, , k~, • . • c, k- - q , . . • , k V P F o r q = k , we obtain P (3) rp-i 2 2 (k , , a=0 u=i i N-a K~, • • . , K. , j K. - 1 , k. ,, , • • • , k - a, . . . , k ) c* j -1 j J"'"-'- n . 2 . ( k-, P N-a 9 iC0, . • . , k - CL, » „ . , K . 1 Z p j= P +l = ( R., , K^> # . . ,N+l K- f • I L p 1 • . , K n . , K . - 1 , K . j-1 + " j 1 , . . . , K j+1 n . 1965 MULTINOMIAL COEFFICIENTS 97 It "will be noted that in both (2) and. (3) the sum i s independent of p, thus by s u m m i n g on p we obtain k _ n p -p-i (4) 2 2 p=l s ( k., , k~, i a=0|j = l n L N-a • . . , k. 1 , k . - l , k . . , , . . . , k - a j e j-l j j+1 p + N-a 2 (l k, , k ? , . . . , k - a , . . . , k. , , k . - l , k. , , . . . , k i+r J-l' J j=p+l N+l = n( k , k , . . . , k , . . . , k x 2 g n For n = 2, (2) and (3) r e d u c e to (3) and (4) of [3] , p. 246. 3. SECOND SET OF FORMULAE Consider the f o r m u l a e leading to (2) and (3). If we multiply the f i r s t r e l a t i o n by +1, the second by - 1 , . . . , the ( q + l ) - t h (-1) , e t c . , . . . 2 we obtain p-1 q (5) r e l a t i o n by (-1) N-a 2 ( ) + k j , ^ , .B.,k.^rk.-l,k.+r ...,kp-a, ...,kn a=0L n ,= N-a +1 ki'V-'-'V'0" "•,kJ-l,kj"1,kJ+l""",kn q N-l 2 2 ( - l ) a ( k, , k . . .N-a+l , k - a , . . . , k )+d ^ , k-, . . . , k , . . . , k ) + oJ 1 2 p n l Z p n a=l (-l)q+1( and, k (6) N k-. » k_ j . o . , k P 2 a=0 r * "q ) -q- Ij . . . , k D-l * \.k 2 ( j= P +l k 2 kj.^kM'Vl a , , , , k ) n + N-a k r k2, . . - » k p - a » • • • ' k j - l , k j " 1 , k j + l ' ' ' * , k n P N+l N-a+l 22 ( i k, , k~, . . . , k - a, . . o , k a=l V 1 2 p n k, , k 9 , . . - . , k , • . . , k ) I 2 p n . April SUMMATION FORMULAE FOR 98 (5) and (6) for n = 2 r e d u c e to (7) of [3] , p . 247. 4. THIRD SET OF FORMULAE Using the notation of section 2 we w r i t e for n 2 k = N+l, k = 0 , ^ s p s=l p-1 2 [N, ( k . - i ) , o , k n ] n + 2 [N, 0, ( k . - l ) , k n ] = [ N + l , 0 , k ] J=P+1 2 [N+l, (k.-l), l , k n ] + [ N + l , 0 , k n ] + 2 [N+l, l . ( k . - l ) , k n ]= [N+2, l . k j j=p+l j= 2 [N+q, (k.-l), q, k n ]+ [N+q, q - l , k j + 2 [N+q, q, (k.-l), k j = [N+q+1, q, k n ] J=P+1 j= P" 2 [N+h, (k.-l).h, k ]+[N+h, h - l , k n ] + 2 [N+h, h, (k.-l), k 1= [N+h+1, h, k n ] , j=p+l j= By adding and simplifying we obtain q 2 p-1 2 [N+a, ( k . - l ) , a, k ] + 2 [N+a, a, ( k . - l ) , k [N+q,q,k n ] , ] J=l j=P+l or, using the c l a s s i c a l notation p-1 Q=0 (7) 2 S A ( • i n 2 + k , , k 0 , . . . , k . ^ k . - ^ k . , . , . . . , a, . . . , k ' 1 (k j=p+i 2 j-1 l ' k2 a j l+l k N+a j - l * k j - 1 ' k j+l N+q+1 k k k l' 2"-" p-l' q + 1 'kP+l',','kn n . k n 1965 MULTINOMIAL COEFFICIENTS 99 and s i m i l a r l y h -p-1 (8) N+a 1 •K-i > K _ , . , . , K . 1 , K . - I , K , i . , 1 L l-l i l+l a=q|_j=l J J J n i 1 ' j=p+i • • • » a» 2' • ° " ' , l' k 2'•'•'kp~1' ( k For . 0 , a , B . . , K n N+a .( k 0 h+1 i_i ' k.~l, n+h+1 ' kp+l' i-i-i » • " • » -r, , B • • ' kn n+q-1 rk2' •••,kp-i,q'1'kP+r ^ e e , , k n n = 2 (8) r e d u c e s to (11) of [3] p. 248. 5. FOURTH SET OF FORMULAE (8) of [1] can be simplified in writing by introducing the notation k , k 1 2 ^n-1 n-1 s 1 (9) ... 1 1 = (n • 2 ) j =0 j =0 j . n .s=l j =0 J J J J l 2 n-1=0 s II o p e r a t e s on the o p e r a t o r 2 . Under t h e s e conditions (8) of where [ l ] can be w r i t t e n for, n n 1 k g = p+q, s=l i j g =p , s=l k n-1 s (io) ( n • 2 s=l 1 j =0 )(,h'h'-'-> • Let us substitute p+r for )-d. = k j )(,. k n l "V V j 2 ' • • • ' V j n p in (10), we obtain for p+q l ' k 2' • • • ' k n (j. , j _ , . . . , j ) n-1 p+r 'h'h'""3n with ) = ( n • 2 )L \ t=l " h j h h h, =0 ' J r l ' 2 - 2 ' - - " V n )(vh l'h2'-'-'hr 100 SUMMATION FORMULAE FOR 2 h. = r , 2 i=l j . = p+r, 2 i=l April k. = p + q + r , i=l s o t h a t s u b s t i t u t i n g i n t o (10) w e o b t a i n n-1 (ii) s ( n • s=l S )(n j =0 J • v( J n-1 t • 2 t=l )(, _ k K Jl ! h =0 : i » ! p k JT . •••JJ J n S J 2 k 2 )(k K n i q . ) . k K, - J , , . . . , K -J 1 Jl t s r ) = l/ P+cl+r ) h,,h9, .. .,h ; kl3k0, . . . ,k ' 1 Z n 1 Z n ' M o r e g e n e r a l l y a s c a n be p r o v e d by i n d u c t i o n w e c a n w r i t e m-1 (12) n i=l J k n-1 ' ( n 2 ' i=l i, j k m-1 } n =0 k i=l in m, 1 J j l -k k J + 1 , 1 J J j+l,i . / ( x _ , ^1 m, 2 m, n q 11 -kqj ' J+1'2 2 2 * * ' 12 q k J ' n k J + 1 m v In where, S <kj,t~Vl,t) = q j' f °rj J= 1 . 2 - - - n t=l REFERENCES S. T a u b e r , " O n M u l t i n o m i a l C o e f f i c i e n t s , " A m e r , M a t h . MonthLy, 70(1963), 1058-1063, L. C a r l i t z , " S u m s of P r o d u c t s Elemente der Mathematik, E. Netto, Chelsea, Lehrbuch der of Multinomial 18(1963), ppe Combinatorik, N . Y. , 19-58. xxxxxxxxxxxxxxx Coefficients, " 37-39. r e p r i n t of s e c o n d Ed„ , >• 'n
© Copyright 2025 Paperzz