Nitrogen chemistry in the inner regions of protoplanetary disks Catherine Walsh (Leiden Observatory) Hideko Nomura (Kyoto University) Ewine van Dishoeck (Leiden Observatory) Wednesday, 25 September 13 1 Outline ✴ Introduction ✴ Protoplanetary disk model ✴ Results ✴ Conclusions and further work Wednesday, 25 September 13 2 Introduction Wednesday, 25 September 13 3 Low-mass star formation Schematic view of low-mass star formation and planetary system formation Outflow X 1000 Wednesday, 25 September 13 Infall Cloud Collapse Protoplanetary Disk Planet Formation Planetary System 4 Protoplanetary disks Protoplanetary disks are physically and chemically complex environments Figure adapted from Mumma & Charnley 2011 Ion-molecule chemistry Molecular layer Photochemistry Surface chemistry Migration Mixing CH+, H2O, OH, CO, HCN, HNC, SO, H2CO, HC3N, cC3H2, CN, CS, C2H, HCO+, N2H +, isotopologues 100 AU Far-IR and (sub)mm Wednesday, 25 September 13 Surface Midplane Cosmic rays Thermochemistry CO, HCN, H2O, OH, C2H2 1 AU Near-IR Hot and diffuse photo-dominated surface abundant in ions and atoms 10 AU Mid-IR Warm molecule-rich region CO, HCN, H2O, OH, C2H2 CH4, CO2 Dense and frozen midplane where young planets likely begin to form 5 Motivation Zooming into the planet forming region (< 10 AU) ... Median of continuum subtracted normalized spectra Spitzer IRS spectra Sun-like stars show C2H2 emission at 13.7 μm AND HCN emission at 14.0 μm HCN Sun-like star (scaled) 3 Cool Star 2 Cool stars show C2H2 emission at 13.7 um AND NO HCN emission at 14.0 um C2H2 1 The question is why? 0 13.4 13.6 13.8 14.0 Wavelength [micron] 14.2 14.4 Figure adapted from Pasucci et al. 2009 Wednesday, 25 September 13 6 Nitrogen chemistry In the warm molecular regions of protoplanetary disks, nitrogen is mainly in the form of N2 N2 is not observable in cold/ warm gas so need to use proxies such as N2H+ and CN/ HCN Many complex organic molecules are N-containing species, e.g., the simplest amino acid, glycine, NH2CH2COOH Photodissociation of N2 releases N for incorporation into HCN Complex Organic Molecules Figure adapted from HilyBlant et al. 2013 Wednesday, 25 September 13 7 Questions Does the radiation field present in the disk influence the nitrogen chemistry through the photodissociation of N2? If so, can this explain the trend seen in the strength of HCN line emission at 14 μm? M Cool 3000 K Weak FUV Wednesday, 25 September 13 K G F A Hot 10,000 K Strong FUV 8 Protoplanetary disk model Wednesday, 25 September 13 9 Model: Physics Spectral type M Dwarf T Tauri Herbig Ae Effective temperature 3000 K 4000 K 10,000 K Stellar mass 0.1 Mo 0.5 Mo 2.0 Mo Stellar radius 0.7 Ro 2.0 Ro 2.0 Ro UV excess1 No Yes No X-ray model2 TW Hya TW Hya Lx ~ 1029 erg s-1 1T Tauri stars have a strong UV excess thought to be triggered by accretion 2 Low-mass stars are more X-ray bright than higher-mass stars (TW Hya, L ~ 1030 erg s-1) x Wednesday, 25 September 13 10 Model: Chemistry ✴ Gas-phase chemistry ‣ UMIST Database for Astrochemistry, ‘RATE12’ (McElroy et al. 2013) ‣ Photochemistry (http://home.strw.leidenuniv.nl/~ewine/photo/) ‣ Hot H2 reactions (Bruderer et al. 2013) ‣ H2, CO, and N2 self- and mutual shielding (Visser et al. 2011; Li et al. 2013) ✴ Gas-grain interactions (Walsh et al. 2010,2012,2013a) ‣ Freeze out ‣ Thermal desorption ‣ Non-thermal desorption (cosmic rays, UV photons, chemical/reactive) ✴ Grain-surface chemistry (Walsh et al. 2013b) ‣ Two-body association reactions (Garrod et al. 2006, 2008) Wednesday, 25 September 13 11 Model results Wednesday, 25 September 13 12 Results: disk structure M Dwarf T Tauri M Dwarf Disk Gas Temperature (K) 7 6 10 5 4 3 10 3 2 2 6 10 5 4 3 10 2 1 0 106 105 104 103 102 101 100 10-1 10-2 10-3 10-4 10-5 10-6 9 10 0 1 2 3 9 4 5 6 Radius (AU) 7 8 9 10 M Dwarf Disk 8 -2 -1 FUV Flux (erg cm s ) 7 Height (AU) 6 5 4 3 2 1 0 0 1 2 3 4 5 6 Radius (AU) 7 8 9 10 103 6 5 4 102 3 2 1 =1 0 Height (AU) 7 3 2 1 Herbig Ae Disk Gas Temperature (K) 8 1 =1 10 0 1 2 3 4 5 6 Radius (AU) 7 8 9 10 T Tauri Disk 8 -2 -1 FUV Flux (erg cm s ) 7 6 1 106 105 104 103 102 101 100 10-1 10-2 10-3 10-4 10-5 10-6 Height (AU) Height (AU) 7 104 9 T Tauri Disk Gas Temperature (K) 8 Height (AU) 8 104 9 Height (AU) 104 9 Herbig Ae 5 4 3 2 1 0 0 1 2 3 4 5 6 Radius (AU) 7 8 9 10 =1 101 0 0 1 2 3 9 4 5 6 Radius (AU) 8 Herbig Ae Disk 7 FUV Flux (erg cm-2 s-1) 7 8 9 10 7 8 9 10 6 5 4 3 2 1 0 0 1 2 3 4 5 6 Radius (AU) 106 105 104 103 102 101 100 10-1 10-2 10-3 10-4 10-5 10-6 Increasing gas temperature Increasing FUV flux Wednesday, 25 September 13 13 Results: molecular structure T Tauri 10 M Dwarf Disk x(HCN) 8 6 10-7 5 10-8 4 1 T Tauri Disk x(HCN) 6 5 4 0 1 2 3 9 M Dwarf Disk x(C2H2) 8 7 4 5 6 Radius (AU) 7 8 9 10 10-5 8 10-6 7 Height (AU) 6 9 10-7 5 10-8 4 10-9 3 =1 1 1 2 3 T Tauri Disk x(C2H2) 4 5 6 Radius (AU) 7 8 =1 9 10 6 5 4 0 1 2 3 4 5 6 Radius (AU) 7 8 9 10 Molecular layer closest to disk “surface” 10-7 6 0 1 2 3 4 5 6 Radius (AU) 7 8 9 10 Herbig Ae Disk x(HCN) 10-5 10-6 10-7 10-8 4 10-9 3 10-10 2 1 10-12 0 10-4 9 10-5 8 10-6 7 10-7 6 10-11 =1 10-12 0 10-10 =1 10-4 5 10-11 10-9 3 10-12 0 0 7 10-8 10-10 2 10-11 1 2 10-6 10-10 0 10-4 8 10-9 10-12 0 0 10-5 10-8 10-11 1 =1 9 10 10-9 3 10-10 2 3 2 Height (AU) 9 10-5 8 10-6 7 Height (AU) Height (AU) 7 Herbig Ae -4 Height (AU) 9 -4 Height (AU) M Dwarf 1 2 3 Herbig Ae Disk x(C2H2) 4 5 6 Radius (AU) 7 8 9 10 10-5 10-6 10-7 5 10-8 4 10-9 3 10-10 2 10-11 1 10-12 0 10-4 10-11 =1 10-12 0 1 2 3 4 5 6 Radius (AU) 7 8 9 10 Deeper, much narrower molecular layer HCN and C2H2 are both abundant in the disk above the τ = 1 surface (N(H2) ~ 5 x 1021 cm-2) How does this affect the column densities? Wednesday, 25 September 13 14 Results: molecular structure 10 20 10 19 1021 M Dwarf T Tauri Herbig Ae N(HCN) Column density (cm-2) Column density (cm-2) 1021 1018 1017 1016 1015 1014 1013 1012 10 20 10 19 1018 1017 1016 1015 1014 1013 1012 N( = 1) 1011 M Dwarf T Tauri Herbig Ae N(C2H2) N( = 1) 1011 0.1 1 Radius (AU) 10 0.1 1 Radius (AU) 10 Largest column density of both HCN and C2H2 in “observable” layer in M Dwarf model Lower FUV flux Decreased photodissociation of N2 AND HCN Photodissociation is not crucial for the conversion from N2 to HCN Wednesday, 25 September 13 15 Results: molecular structure 1021 1019 10 Column density (cm-2) Column density (cm-2) 10 M Dwarf T Tauri Herbig Ae N(HCN) 20 1021 1018 1017 1016 1015 1014 1013 1012 1019 1018 1017 1016 1015 1014 1013 1012 N( = 1) 1011 M Dwarf T Tauri Herbig Ae N(C2H2) 20 N( = 1) 1011 0.1 1 Radius (AU) 10 0.1 1 Radius (AU) 10 Migration of HCN ‘snowline’ outwards with increasing spectral type Wednesday, 25 September 13 16 Results: N2 shielding Does N2 shielding play a role in the nitrogen chemistry? 9 10 T Tauri Disk N2 Height (AU) 6 5 T Tauri Disk HCN 8 No shielding ------------------With shielding 7 101 9 10 4 10 0 10 -1 3 2 7 1 1 Height (AU) 8 2 6 5 No shielding ------------------With shielding 100 4 3 2 1 10-2 0 0 1 2 3 4 5 6 Radius (AU) 7 8 9 10 10-1 0 0 1 2 3 4 5 6 Radius (AU) 7 8 9 10 Neglect of N2 shielding Decrease in N2 fractional abundance (~ 100) and small increase in HCN abundance (~ a few) N2 shielding hinders the production of HCN over a very narrow region of this disk Wednesday, 25 September 13 17 Summary Wednesday, 25 September 13 18 Summary ✴ Stellar spectral type influences the molecular composition of the disk ✴ Disks around cooler stars have a greater fractional abundance of molecules in the upper disk atmosphere ✴ HCN and C2H2 are most abundant in the disk around the M Dwarf star in contradiction with mid-IR observations ✴ Decreased FUV flux leads to decreased photodissociation of both N2 and HCN ✴ Photodissociation of N2 (releasing N) is not crucial for the formation of HCN ✴ N2 shielding hinders the formation of N-bearing species in a narrow region of the disk molecular layer only Wednesday, 25 September 13 19 Further questions Why the apparent disagreement between models and observations? Median of continuum subtracted normalized spectra HCN Sun-like star (scaled) 3 Could HCN excitation conditions be responsible for the lack of HCN emission from disks around cool stars? Cool Star 2 Cool stars are also bright in X-rays C2H2 Are X-rays helping release N from N2 to form other N-containing species such as HCN? 1 0 13.4 13.6 13.8 14.0 Wavelength [micron] 14.2 14.4 Figure adapted from Pasucci et al. 2009 Wednesday, 25 September 13 20
© Copyright 2026 Paperzz