Geometry Ch 4 Post test ____ 1. Can you use the SAS Postulate, the AAS Theorem, or both to prove the triangles congruent? A. either SAS or AAS B. AAS only ____ C. SAS only D. neither 2. Which triangles are congruent by ASA? F A ( V T (( G ( ) (( B H U C A. B. ____ C. D. none 3. For which situation could you immediately prove A. I only ____ 4. If B. II only and ? C. III only using the HL Theorem? D. II and III , which additional statement does NOT allow you to conclude that A. B. ____ C. D. 5. What other information do you need in order to prove the triangles congruent using the SAS Congruence Postulate? A B A. B. ____ D C. D. 6. Which overlapping triangles are congruent by ASA? A. B. ____ C C. D. 7. Supply the missing reasons to complete the proof. Given: and Prove: N P O M Q A. ASA; Substitution B. SAS; Corresp. parts of ____ C. AAS; Corresp. parts of D. ASA; Corresp. parts of 8. Find the value of x. The diagram is not to scale. Given: , S R A. 19 ____ 9. T U B. 21 C. 142 is the bisector of and is the bisector of SSS, SAS, or ASA would you use to help you prove A. AAS B. SSS C. SAS D. 24 . Also, ? . Which of AAS, D. ASA ____ 10. Given A. 13 and B. 4 ____ 11. Given A. 46 B. 64 , find the length of QS and TV. C. 14 D. 27 and , find C. 47 and D. 67 ____ 12. What is the missing reason in the two-column proof? Given: Prove: bisects and bisects B < A C > D Statements Reasons 1. 2. 3. bisects 1. Given 2. Definition of angle bisector 3. Reflexive property 4. 5. 6. bisects 4. Given 5. Definition of angle bisector 6. ? A. SAS Postulate B. ASA Postulate C. AAS Theorem D. SSS Postulate ____ 13. Find the value of x. The diagram is not to scale. | | S (2 x – 50)° R (8 x )° T A. ____ 14. What common angle do U B. C. D. none of these B C A F G A. B. C. D. ____ 15. What is the value of x? | E xº D 113.5° | F Drawing not to scale A. 56.75° B. 123.25° C. 66.5° D. 33.25° C. 66° D. 132° ____ 16. What is the value of x? 48° 21 21 xº Drawing not to scale A. 142° B. 71° ____ 17. Justify the last two steps of the proof. Given: and Prove: E F G H Proof: 1. 1. Given 2. Given 3. 4. 2. 3. 4. A. Symmetric Property of B. Symmetric Property of ; SAS ; SSS C. Reflexive Property of D. Reflexive Property of ; SAS ; SSS ____ 18. R, S, and T are the vertices of one triangle. E, F, and D are the vertices of another triangle. RS = 4, and EF = 4. Are the two triangles congruent? If yes, explain and tell which segment is congruent to A. yes, by ASA; B. yes, by SAS; C. yes, by AAS; D. No, the two triangles are not congruent. ____ 19. What common side do A B C D E F G A. B. H C. D. ____ 20. From the information in the diagram, can you prove ? Explain. A. yes, by ASA B. yes, by AAA C. yes, by SAS D. no ____ 21. What additional information will allow you to prove the triangles congruent by the HL Theorem? A B | C D A. B. | E C. D. ____ 22. Which pair of triangles is congruent by ASA? A. C. B. D. ____ 23. State whether and are congruent. Justify your answer. 5 A. B. C. D. 5 yes, by SSS only yes, by either SSS or SAS yes, by SAS only No; there is not enough information to conclude that the triangles are congruent. ____ 24. Based on the given information, what can you conclude, and why? Given: N P O M Q A. B. by ASA by ASA C. D. by SAS by SAS ____ 25. Name the theorem or postulate that lets you immediately conclude A B ( ( D C A. SAS B. ASA C. AAS ____ 26. Supply the reasons missing from the proof shown below. Given: , Prove: D. none of these | | ( ( A B D C A. ASA; Corresp. parts of B. SAS; Reflexive Property C. SSS; Reflexive Property D. SAS; Corresp. parts of Geometry Ch 4 Post test Answer Section 1. ANS: B PTS: 1 DIF: L3 REF: 4-3 Triangle Congruence by ASA and AAS OBJ: 4-3.1 To prove two triangles congruent using the ASA Postulate and the AAS theorem NAT: CC G.SRT.5| G.2.e| G.3.e| G.5.e STA: 4.1.a TOP: 4-3 Problem 4 Determining Whether Triangles Are Congruent KEY: ASA | AAS | reasoning 2. ANS: A PTS: 1 DIF: L2 REF: 4-3 Triangle Congruence by ASA and AAS OBJ: 4-3.1 To prove two triangles congruent using the ASA Postulate and the AAS theorem NAT: CC G.SRT.5| G.2.e| G.3.e| G.5.e STA: 4.1.a TOP: 4-3 Problem 1 Using ASA KEY: ASA 3. ANS: C PTS: 1 DIF: L3 REF: 4-6 Congruence in Right Triangles OBJ: 4-6.1 To prove right triangles congruent using the hypotenuse-leg theorem NAT: CC G.SRT.5| G.2.e| G.3.e| G.5.e STA: 4.1.a TOP: 4-6 Problem 1 Using the HL Theorem KEY: hypotenuse | HL Theorem | right triangle | reasoning 4. ANS: B PTS: 1 DIF: L3 REF: 4-3 Triangle Congruence by ASA and AAS OBJ: 4-3.1 To prove two triangles congruent using the ASA Postulate and the AAS theorem NAT: CC G.SRT.5| G.2.e| G.3.e| G.5.e STA: 4.1.a TOP: 4-3 Problem 4 Determining Whether Triangles Are Congruent KEY: ASA | AAS 5. ANS: C PTS: 1 DIF: L4 REF: 4-2 Triangle Congruence by SSS and SAS OBJ: 4-2.1 To prove two triangles congruent using the SSS and SAS Postulates NAT: CC G.SRT.5| G.2.e| G.3.e| G.5.e STA: 4.1.a TOP: 4-2 Problem 2 Using SAS KEY: SAS | reasoning 6. ANS: A PTS: 1 DIF: L3 REF: 4-7 Congruence in Overlapping Triangles OBJ: 4-7.1 To identify congruent overlapping triangles NAT: CC G.SRT.5| G.2.e| G.3.e| G.5.e STA: 4.1.a TOP: 4-7 Problem 2 Using Common Parts KEY: congruent figures | corresponding parts | overlapping triangles | proof 7. ANS: D PTS: 1 DIF: L3 REF: 4-4 Using Corresponding Parts of Congruent Triangles OBJ: 4-4.1 To use triangle congruence and corresponding parts of congruent triangles to prove that parts of two triangles are congruent NAT: CC G.CO.12| CC G.SRT.5| G.2.e| G.3.e STA: 4.1.a TOP: 4-4 Problem 1 Proving Parts of Triangles Congruent KEY: ASA | corresponding parts | proof | two-column proof 8. ANS: A PTS: 1 DIF: L4 REF: 4-5 Isosceles and Equilateral Triangles OBJ: 4-5.1 To use and apply properties of isosceles and equilateral triangles NAT: CC G.CO.10| CC G.CO.13| CC G.SRT.5| G.1.c| G.2.e| G.3.e STA: 4.1.a TOP: 4-5 Problem 2 Using Algebra KEY: Isosceles Triangle Theorem | isosceles triangle | problem solving | Triangle Angle-Sum Theorem 9. ANS: D PTS: 1 DIF: L4 REF: 4-7 Congruence in Overlapping Triangles OBJ: 4-7.2 To prove two triangles congruent using other congruent triangles 10. 11. 12. 13. 14. 15. 16. 17. 18. NAT: CC G.SRT.5| G.2.e| G.3.e| G.5.e STA: 4.1.a TOP: 4-7 Problem 2 Using Common Parts KEY: corresponding parts | congruent figures | ASA | SAS | AAS | SSS | reasoning ANS: A PTS: 1 DIF: L4 REF: 4-1 Congruent Figures OBJ: 4-1.1 To recognize congruent figures and their corresponding parts NAT: CC G.SRT.5| G.2.e| G.3.e STA: 4.1.a TOP: 4-1 Problem 2 Using Congruent Parts KEY: congruent polygons | corresponding parts ANS: A PTS: 1 DIF: L4 REF: 4-1 Congruent Figures OBJ: 4-1.1 To recognize congruent figures and their corresponding parts NAT: CC G.SRT.5| G.2.e| G.3.e STA: 4.1.a TOP: 4-1 Problem 2 Using Congruent Parts KEY: congruent polygons | corresponding parts ANS: B PTS: 1 DIF: L3 REF: 4-3 Triangle Congruence by ASA and AAS OBJ: 4-3.1 To prove two triangles congruent using the ASA Postulate and the AAS theorem NAT: CC G.SRT.5| G.2.e| G.3.e| G.5.e STA: 4.1.a TOP: 4-3 Problem 2 Writing a Proof Using ASA KEY: ASA | proof | two-column proof ANS: C PTS: 1 DIF: L4 REF: 4-5 Isosceles and Equilateral Triangles OBJ: 4-5.1 To use and apply properties of isosceles and equilateral triangles NAT: CC G.CO.10| CC G.CO.13| CC G.SRT.5| G.1.c| G.2.e| G.3.e STA: 4.1.a TOP: 4-5 Problem 3 Finding Angle Measures KEY: Isosceles Triangle Theorem | isosceles triangle ANS: A PTS: 1 DIF: L2 REF: 4-7 Congruence in Overlapping Triangles OBJ: 4-7.1 To identify congruent overlapping triangles NAT: CC G.SRT.5| G.2.e| G.3.e| G.5.e STA: 4.1.a TOP: 4-7 Problem 1 Identifying Common Parts KEY: overlapping triangle | congruent parts ANS: D PTS: 1 DIF: L3 REF: 4-5 Isosceles and Equilateral Triangles OBJ: 4-5.1 To use and apply properties of isosceles and equilateral triangles NAT: CC G.CO.10| CC G.CO.13| CC G.SRT.5| G.1.c| G.2.e| G.3.e STA: 4.1.a TOP: 4-5 Problem 2 Using Algebra KEY: Isosceles Triangle Theorem | Triangle Angle-Sum Theorem | isosceles triangle ANS: C PTS: 1 DIF: L2 REF: 4-5 Isosceles and Equilateral Triangles OBJ: 4-5.1 To use and apply properties of isosceles and equilateral triangles NAT: CC G.CO.10| CC G.CO.13| CC G.SRT.5| G.1.c| G.2.e| G.3.e STA: 4.1.a TOP: 4-5 Problem 2 Using Algebra KEY: isosceles triangle | Converse of Isosceles Triangle Theorem | Triangle Angle-Sum Theorem ANS: D PTS: 1 DIF: L3 REF: 4-2 Triangle Congruence by SSS and SAS OBJ: 4-2.1 To prove two triangles congruent using the SSS and SAS Postulates NAT: CC G.SRT.5| G.2.e| G.3.e| G.5.e STA: 4.1.a TOP: 4-2 Problem 1 Using SSS KEY: SSS | reflexive property | proof ANS: A PTS: 1 DIF: L3 REF: 4-4 Using Corresponding Parts of Congruent Triangles OBJ: 4-4.1 To use triangle congruence and corresponding parts of congruent triangles to prove that parts of two triangles are congruent NAT: CC G.CO.12| CC G.SRT.5| G.2.e| G.3.e STA: 4.1.a TOP: 4-4 Problem 1 Proving Parts of Triangles Congruent KEY: 19. ANS: REF: OBJ: STA: KEY: 20. ANS: REF: OBJ: NAT: TOP: KEY: 21. ANS: OBJ: NAT: TOP: KEY: 22. ANS: REF: OBJ: NAT: KEY: 23. ANS: REF: OBJ: NAT: TOP: 24. ANS: REF: OBJ: NAT: TOP: KEY: 25. ANS: REF: OBJ: NAT: TOP: KEY: 26. ANS: REF: OBJ: NAT: STA: KEY: ASA | corresponding parts | word problem A PTS: 1 DIF: L3 4-7 Congruence in Overlapping Triangles 4-7.1 To identify congruent overlapping triangles NAT: CC G.SRT.5| G.2.e| G.3.e| G.5.e 4.1.a TOP: 4-7 Problem 1 Identifying Common Parts overlapping triangle | congruent parts A PTS: 1 DIF: L3 4-3 Triangle Congruence by ASA and AAS 4-3.1 To prove two triangles congruent using the ASA Postulate and the AAS theorem CC G.SRT.5| G.2.e| G.3.e| G.5.e STA: 4.1.a 4-3 Problem 4 Determining Whether Triangles Are Congruent ASA | reasoning C PTS: 1 DIF: L3 REF: 4-6 Congruence in Right Triangles 4-6.1 To prove right triangles congruent using the hypotenuse-leg theorem CC G.SRT.5| G.2.e| G.3.e| G.5.e STA: 4.1.a 4-6 Problem 2 Writing a Proof Using the HL Theorem hypotenuse | HL Theorem | right triangle | reasoning B PTS: 1 DIF: L2 4-3 Triangle Congruence by ASA and AAS 4-3.1 To prove two triangles congruent using the ASA Postulate and the AAS theorem CC G.SRT.5| G.2.e| G.3.e| G.5.e STA: 4.1.a TOP: 4-3 Problem 1 Using ASA ASA B PTS: 1 DIF: L3 4-2 Triangle Congruence by SSS and SAS 4-2.1 To prove two triangles congruent using the SSS and SAS Postulates CC G.SRT.5| G.2.e| G.3.e| G.5.e STA: 4.1.a 4-2 Problem 3 Identifying Congruent Triangles KEY: SSS | SAS | reasoning A PTS: 1 DIF: L3 4-3 Triangle Congruence by ASA and AAS 4-3.1 To prove two triangles congruent using the ASA Postulate and the AAS theorem CC G.SRT.5| G.2.e| G.3.e| G.5.e STA: 4.1.a 4-3 Problem 4 Determining Whether Triangles Are Congruent ASA | reasoning B PTS: 1 DIF: L2 4-3 Triangle Congruence by ASA and AAS 4-3.1 To prove two triangles congruent using the ASA Postulate and the AAS theorem CC G.SRT.5| G.2.e| G.3.e| G.5.e STA: 4.1.a 4-3 Problem 4 Determining Whether Triangles Are Congruent ASA | AAS | SAS D PTS: 1 DIF: L4 4-5 Isosceles and Equilateral Triangles 4-5.1 To use and apply properties of isosceles and equilateral triangles CC G.CO.10| CC G.CO.13| CC G.SRT.5| G.1.c| G.2.e| G.3.e 4.1.a TOP: 4-5 Problem 1 Using the Isosceles Triangle Theorems segment bisector | isosceles triangle | proof | two-column proof
© Copyright 2025 Paperzz