TE‐20 Name: TransformationsandCongruence 6.1H Ready,Set,Go! Ready Topic:PythagoreanTheorem Foreachofthefollowingrighttrianglesdeterminethenumberunitmeasureforthemissingside. 1. 2. 3. 1 5 √ Topic:FindingdistanceusingPythagoreanTheorem Usethecoordinategridtofindthelengthofeachsideofthetrianglesprovided. 4. 5. SDUHSDMath1Honors TE‐21 Set Topic:Transformations Transformpointsasindicatedineachexercisebelow. 6. a. RotatepointAaroundtheorigin 90° clockwise, labelasA’ b. ReflectpointAoverthex‐axis,labelasA” c. Applytherule 2, 5 ,topointAand labelA’’’ 7. a. ReflectpointBovertheline ,labelasB’ b. RotatepointB180°abouttheorigin,labelasB’’ c. TranslatepointBthepointup3andright7 units,labelasB’’’ SDUHSDMath1Honors TE‐22 Topic:Slopesofparallelandperpendicularlines. 8. Graphalineparalleltothe 9. Graphalineperpendicular to givenline. thegivenline. Equationforgivenline: Equationfornewline: Answersvary Equationforgivenline: Equationfornewline: Answersvary 10. Graphalineperpendicular to thegivenline. Equationforgivenline: Equationfornewline: Answersvary Go Topic:Graphinglinearequations Grapheachequationonthecoordinategridprovided.Extendthelineasfarasthegridwillallow. 11. 2 3 12. 2 3 13. Whatsimilaritiesand differencearethere betweentheequationsin number11and12? Samey‐intercept, oppositeslopes SDUHSDMath1Honors TE‐23 14. 1 15. 3 16. Whatsimilaritiesand differencearethere betweentheequationsin number14and15? Sameslopes,differenty‐ intercepts Topic:Solveequations Solveeachequationfortheindicatedvariable. 17.3 2 5 8;Solveforx. 19. 5 2 ;Solveforx. SDUHSDMath1Honors 18. 3 20. 6 22; Solveforn. ;Solvefory. TE‐35 Name: TransformationsandCongruence 6.2 Ready,Set,Go! Ready Topic:Basicrotationsandreflectionsofobjects Ineachproblemtherewillbeapre‐imageandseveralimagesbasedonthegivenpre‐image. Determinewhichoftheimagesarerotationsofthegivenpre‐imageandwhichofthemare reflectionsofthepre‐image.Ifanimageappearstobecreatedastheresultofarotationanda reflectionthenstateboth. 1. Reflection Pre‐Image Rotation Rotation ImageA ImageB Rotation& Reflection ImageC ImageD 2. Rotation Pre‐Image ImageA Rotation ImageB Rotation& Reflection ImageC Rotation ImageD Topic:Defininggeometricshapesandcomponents Foreachofthegeometricwordsbelowwriteadefinitionoftheobjectthataddressestheessential elements.Also,listnecessaryattributesandcharacteristics. 3. Quadrilateral:Foursidedpolygon 4. Parallelogram:Quadrilateralwithtwopairsofparallelsides 5. Rectangle:Parallelogramwithfourrightangles 6. Square:Rectanglewithfourcongruentsides 7. Rhombus:Parallelogramwithfourcongruentsides 8. Trapezoid:Quadrilateralwithonepairofparallelsides SDUHSDMath1Honors TE‐36 Set Topic:Reflectingandrotatingpoints Foreachpairofpoint,PandP’,drawinthelineofreflectionthatwouldneedtobeusedtoreflectP ontoP’.Thenfindtheequationofthelineofreflection. 10. 9. Equation: Equation: Foreachpairofpoint,AandA’,drawinthelineofreflectionthatwouldneedtobeusedtoreflectA ontoA’.Thenfindtheequationofthelineofreflection.Also,drawalineconnectingAtoA’andfind theequationofthisline.ComparetheslopesofthelinesofreflectioncontainingAandA’. 12. 11. EquationoftheLineofReflection: EquationoftheLine ′: SDUHSDMath1Honors EquationoftheLineofReflection: EquationoftheLine ′: TE‐37 Topic:ReflectionsandRotations,composingreflectionstocreatearotation 13. a. Whatistheequationforthelineofreflection thatreflectspointPontoP’? b. Whatistheequationforthelineofreflection thatreflectspointP’ontoP’’? c. CouldP’’alsobeconsideredarotationofpoint P?Ifso,whatisthecenterofrotationandhow manydegreeswaspointProtated? Yes.Thecentercouldbeanypointonthe perpendicularbisectorof ′ a. Whatistheequationforthelineofreflection 14. thatreflectspointPontoP’? . b. Whatistheequationforthelineofreflection thatreflectspointP’ontoP’’? c. CouldP’’alsobeconsideredarotationof pointP?Ifso,whatisthecenterofrotation andhowmanydegreeswaspointProtated? Yes.Thecentercouldbeanypointonthe perpendicularbisectorof ′ SDUHSDMath1Honors TE‐38 Go Topic:Slopesofparallelandperpendicularlinesandfindingbothdistanceandslopebetweentwopoints. Writetheslopeofalineparalleltothegivenline. 15. 7 3 Writetheslopeofalineperpendiculartothegivenline. 4 16. Findtheslopebetweenthegivenpairofpoints.Then,usingthePythagoreanTheorem,findthe distancebetweenthepairofpoints.Youmayusethegraphtohelpyouasneeded. 17. 7, 5 2, 7 a. Slope: b. Distance: 13 SDUHSDMath1Honors TE‐39 Topic:Rotationsabouttheorigin Plotthegivencoordinateandthenperformtheindicatedrotationaroundtheorigin,thepoint andplottheimagecreated.Statethecoordinatesoftheimage. 18. Point 4, 2 rotate180° CoordinatesforPoint , 20. Point 7, 3 rotate180° CoordinatesforPoint , 19. Point 5, 3 rotate 90° CoordinatesforPoint , 21. Point 1, 6 rotate 90° CoordinatesforPoint , SDUHSDMath1Honors , , TE‐52 Name: TransformationsandCongruence 6.3H Ready,Set,Go! Ready Topic:Polygons,definitionandnames 1. Whatisapolygon?Describeinyourownwordswhatapolygonis. Answerswillvarybutshouldinclude:closedfigurewithstraightsidesandnocurves. 2. Fillinthenamesofeachpolygonbasedonthenumberofsidesthepolygonhas. NumberofSides NameofPolygon 3 Triangle 4 Quadrilateral 5 Pentagon 6 Hexagon 7 Heptagon 8 Octagon 9 Nonagon 10 Decagon Topic:Rotationasatransformation 3. Whatfractionofaturndoesthewagonwheel 4. WhatfractionofaturndoesthemodelofaFerris belowneedtoturninordertoappearthevery wheelbelowneedtoturninordertoappearthe sameasitdoesrightnow?Howmanydegreesof verysameasitdoesrightnow?Howmany rotationwouldthatbe? degreesofrotationwouldthatbe? ofaturn; ° ofaturn;20° SDUHSDMath1Honors TE‐53 Set Topic:Linesofsymmetryanddiagonals 5. Drawthelinesofsymmetryforeachregularpolygon,fillinthetableincludinganexpressionforthe numberoflinesofsymmetryinan‐sidedpolygon. Numberof Numberoflines Sides ofsymmetry 3 3 4 4 5 5 6 6 7 7 8 8 n n 6. Findallofthediagonalsineachregularpolygon.Fillinthetableincludinganexpressionforthenumber ofdiagonalsinan‐sidedpolygon. Numberof Numberof Sides diagonals 3 0 4 2 5 5 6 9 7 14 8 20 n 7. Arealllinesofsymmetryalsodiagonals?Explain. No,somelinesofsymmetrygothroughthemidpointsofoppositesidesoftheregularpolygons whichmeansthattheselinesofsymmetryarenotdiagonalsofthepolygon. SDUHSDMath1Honors TE‐54 8. Arealldiagonalsalsolinesofsymmetry?Explain. No,onlydiagonalsthatgothroughthecenterofregularpolygonsarelinesofsymmetry. 9. Whatshapeswillhavediagonalsthatarenotlinesofsymmetry?Namesomeanddrawthem. Non‐regularpolygons 10. Willallparallelogramshavediagonalsthatarelinesofsymmetry?Ifso,drawandexplain.Ifnotdraw andexplain. Onlysquaresandrhombuseshavediagonalsthatarelinesofsymmetry. Topic: Findinganglesofrotationforregularpolygons. 11. Findtheangle(s)ofrotationthatwillcarrythe12sidedpolygonbelowontoitself. ° 12. Whataretheanglesofrotation(lessthan360° fora20‐gon?Howmanylinesofsymmetry(linesof reflection)willithave? °, °, °, °, °, °, °, °, °, °, °, °, °, °, °, °, °, °, ° 20linesofsymmetry 13. Whataretheanglesofrotation(lessthan360° fora15‐gon?Howmanylineofsymmetry(linesof reflection)willithave? °, °, °, °, °, °, °, °, °, °, °, °, °, ° 15linesofsymmetry 14. Howmanysidesdoesaregularpolygonhavethathasanangleofrotationequalto18°?Explain. 20sides 20linesofsymmetry 15. Howmanysidesdoesaregularpolygonhavethathasanangleofrotationequalto20°?Howmanylines ofsymmetrywillithave? 18sides 18linesofsymmetry SDUHSDMath1Honors TE‐55 Go Topic:Equationsforparallelandperpendicularlines. Findtheequationofaline PARALLELtothegiveninfo andthroughtheindicated point. Findtheequationofaline PERPENDICULARtothegiven lineandthroughtheindicated point. 16.Equationofaline: 4 1 a. Parallellinethroughpoint 1, 7 : b. Perpendicularlinethough point 1, 7 : 17.Tableofaline: 3 8 4 10 5 12 6 14 a. Parallellinethroughpoint 3, 8 : b. Perpendiculartotheline throughpoint 3, 8 : 18.Graphofaline: a. Parallellinethroughpoint 2, 9 : b. Perpendicularlinethrough point 2, 9 : SDUHSDMath1Honors TE‐56 Topic:Reflectingandrotatingpointsonthecoordinateplane. 19.ReflectpointAoverthegivenlineofreflectionand 20. ReflectparallelogramABCDoverthegiven labeltheimageA’. lineofreflectionandlabeltheimageA’B’C’D’. 22. GivenparallelogramQRSTanditsimage Q’R’S’T’drawthelineofreflectionthatwas used. 21. ReflecttriangleABCoverthegivenlineof reflectionandlabeltheimageA’B’C’. 23. UsingpointPasacenterofrotation.Rotatepoint Q 120°aboutpointPandlabeltheimageQ’. 24. UsingpointCasthecenterorrotation.Rotate pointR270°aboutpointCandlabeltheimage R’. SDUHSDMath1Honors TE‐64 Name: TransformationsandCongruence 6.4H Ready,Set,Go! Ready Topic:Definingcongruenceandsimilarity. 1. Whatdoyouknowabouttwofiguresiftheyarecongruent? Samesidelengthsandsameanglemeasurements 2. Whatdoyouneedtoknowabouttwofigurestobeconvincedthatthetwofiguresarecongruent? Thereisasequenceofrigidmotionsthatmaponeontotheother. 3. Whatdoyouknowabouttwofiguresiftheyaresimilar? Sameshape(anglemeasuresarethesame)butdifferentsidelengths. 4. Whatdoyouneedtoknowabouttwofigurestobeconvincedthatthetwofiguresaresimilar? Thereisadilationthatmapsoneontotheother. Set Topic:Classifyingquadrilateralsbasedontheirproperties. Usingtheinformationgivendeterminethemostspecificclassificationofthequadrilateral. 5. Has180°rotationalsymmetry. 6. Has90°rotationalsymmetry. Parallelogram Square 7. Hastwolinesofsymmetrythatarediagonals. 8. Hastwolinesofsymmetrythatarenot diagonals. Rhombus Rectangle 9. Hascongruentdiagonals. 10. Hasdiagonalsthatbisecteachother. Rectangle Parallelogram 11. Hasdiagonalsthatareperpendicular. 12. Hascongruentangles. Rhombus Rectangle SDUHSDMath1Honors TE‐65 Go Topic:Slopeanddistance Findtheslopebetweeneachpairofpoints.Then,usingthePythagoreanTheorem,findthedistance betweeneachpairofpoints. 14. 7, 1 11, 7 13. 3, 2 0, 0 a. Slope b. Distance: a. Slope b. Distance: 2 √ √ 15. 10, 13 a. Slope 5, 1 b. Distance: 13 17. 5, 22 17, 28 a. Slope b. Distance: √ SDUHSDMath1Honors 16. 6, 3 3, 1 a. Slope 18. 1, 7 6, 5 a. Slope b. Distance: √ b. Distance: 13 TE‐66 Topic:Similarandcongruentfigures Determinewhichletterbestdescribestheshapesshown. 19. 20. 21. a. b. c. d. Theshapesareonlycongruent Theshapesareonlysimilar Theshapesarebothsimilarandcongruent Theshapesareneithersimilarnorcongruent a. b. c. d. Theshapesareonlycongruent Theshapesareonlysimilar Theshapesarebothsimilarandcongruent Theshapesareneithersimilarnorcongruent a. b. c. d. Theshapesareonlycongruent Theshapesareonlysimilar Theshapesarebothsimilarandcongruent Theshapesareneithersimilarnorcongruent a. b. c. d. Theshapesareonlycongruent Theshapesareonlysimilar Theshapesarebothsimilarandcongruent Theshapesareneithersimilarnorcongruent a. b. c. d. Theshapesareonlycongruent Theshapesareonlysimilar Theshapesarebothsimilarandcongruent Theshapesareneithersimilarnorcongruent 22. a. b. c. d. Theshapesareonlycongruent Theshapesareonlysimilar Theshapesarebothsimilarandcongruent Theshapesareneithersimilarnorcongruent 24. 23. a. b. c. d. Theshapesareonlycongruent Theshapesareonlysimilar Theshapesarebothsimilarandcongruent Theshapesareneithersimilarnorcongruent 26. 25. a. b. c. d. Theshapesareonlycongruent Theshapesareonlysimilar Theshapesarebothsimilarandcongruent Theshapesareneithersimilarnorcongruent SDUHSDMath1Honors TE‐74 Name: TransformationsandCongruence 6.5H Ready,Set,Go! Ready Topic:Performingasequenceoftransformations Thegivenfiguresaretobeusedaspre‐images.Performthestatedtransformationstoobtainan image.Labelthecorrespondingpartsoftheimageinaccordancewiththepre‐image. 1. a. ReflecttriangleABCovertheline andlabeltheimageA’B’C’. b. RotatetriangleA’B’C’180°aroundthe originandlabeltheimageA’’B’’C’’. 2. a. ReflectquadrilateralABCDovertheline 2andlabeltheimageA’B’C’D’. b. RotatethequadrilateralA’B’C’D’90° around 2, 3 .Labeltheimage A’’B’’C’’D’’. SDUHSDMath1Honors TE‐75 Topic:Findthesequenceoftransformations. Findthesequenceoftransformationsthatwillcarry∆ onto∆ ’ ’ ’.Clearlydescribethesequenceof transformationsbeloweachgrid. 3. 4. Translate8unitsup,rotate ° aboutpointT,andreflectabout Translate8unitsleft,reflectover . . Set Topic:Trianglecongruencies Explainwhetherornotthetrianglesarecongruent,similar,orneitherbasedonthemarkingsthat indicatecongruence. 5. 6. Congruent Similar 8. 7. Neither SDUHSDMath1Honors Congruent TE‐76 9. 10. Neither Congruent Usethegivencongruencestatementtodrawandlabeltwotrianglesthathavetheproper correspondingpartscongruenttooneanother. 11.∆ABC ≅ ∆PQR 12. ∆ ≅∆ Go Topic:Graphingfunctionsandmakingcomparisons. Grapheachpairoffunctionsandmakeanobservationabouthowthefunctionscomparetooneanother. 14. 2 2 13. 2 2 Thelineshavethesamey‐intercept SDUHSDMath1Honors Thecurvesarereflectionsoverthex‐axis. TE‐77 Topic:Reviewoffindingrecursiverulesforsequences Usethegivensequenceofnumberstowritearecursiveruleforthenthvalueofthesequence. 15.3, 6, 12, 24, … , 1, … 16. , 0, , ⋅ , Topic:Trianglecongruenceproperties Questions#17‐20canbecompletedbygoingto:http://illuminations.nctm.org/Activity.aspx?id=3504 Investigatecongruencebymanipulatingtheparts(sidesandangles)ofatriangle.Ifyoucancreate twodifferenttriangleswiththesameparts,thenthosepartsdonotprovecongruence.Canyouprove allthetheorems(SAS,,SSA,SSS,AAS,ASA,AAA)? 17. Eachtrianglecongruencetheoremusesthreeelements(sidesandangles)toprovecongruence.Select threetriangleelementsfromthetop,rightmenutostart.(Note:Thetooldoesnotallowyoutoselect morethanthreeelements.Ifyouselectthewrongelement,simplyunselectitbeforechoosinganother element.)Thiscreatesthoseelementsintheworkarea. Onthetopofthetoolbar,thethreeelementsarelistedinorder.Forexample,ifyouchoosesideAB,angle A,andangleB,youwillbeworkingonAngle–Side–Angle.IfinsteadyouchoosesideAB,angleA,and angleC,youwillbeworkingonAngle–Angle–Side.Thetwotheoremsaredifferent,eventhoughboth involvetwoanglesandoneside. 18. Constructyourtriangle: Movetheelementsofthetrianglesothatpointslabeledwiththesamelettertouch. Clickanddragadottomovetheelementtoanewlocation. Clickanddragaside'sendpointorangle'sarrowtorotatetheelement.Thecenterofrotationisthe side'smidpointortheangle'svertex,respectively. Tohelpplaceelements,pointsmarkedwiththesamelettersnaptogether.Whenanglessnap,the raysareextendedtotheedgeoftheworkarea. Whenyoucreateaclosedtriangle,thepointsmergeandcenterisfilledin. Onceatriangleisformedwiththeoriginalthreeelements,thetrianglemovestothebottom,right corneroftheworkarea,andcongruentelementsappear. SDUHSDMath1Honors TE‐87 Name: TransformationsandCongruence 6.6H Ready,Set,Go! Ready Topic:Correspondingpartsoffiguresandtransformations Giventhefiguresineachsketchwithcongruentanglesandsidesmarked,firstlistthepartsofthe figuresthatcorrespond(Forexample,in#3,∠ ≅ ∠ ).Thendetermineifareflectionoccurredas partofthesequenceoftransformationsthatwasusedtocreatetheimage. 1. Congruencies ∠ ≅∠ ≅ ≅ Reflected?YesorNo 2. SDUHSDMath1Honors Congruencies ≅ ≅ ∠ ≅∠ ∠ ≅∠ ∠ ≅∠ ∠ ≅∠ Reflected?YesorNo TE‐88 Set Topic:Usecongruenttrianglecriteriaandtransformationstojustifyconjectures. Ineachproblembelowtherearesometruestatementslisted.Fromthesestatementsaconjecture(a guess)aboutwhatmightbetruehasbeenmade.Usingthegivenstatementsandconjecture statementcreateanargumentthatjustifiestheconjecture. Conjecture: ∠ ≅ ∠ 3. Truestatements: a. Istheconjecturecorrect?Yes PointMisthemidpointof ∠ ≅∠ b. Argumenttoproveyouareright: ≅ ThetwotrianglesarecongruentbySAS.Therefore,the correspondingpartsarecongruent. 4. Truestatements: ∠ ≅∠ ≅ bisects∠ Conjecture: a. Istheconjecturecorrect?Yes b. Argumenttoproveyouareright: ThetwotrianglesarecongruentbySAS.Therefore, correspondingpartsarecongruentsince∠ ≅∠ bisects∠ SDUHSDMath1Honors 5. Truestatements: isa180°rotationof ∆ ∆ and ≅∆ Conjecture: ∆ a. Istheconjecturecorrect?Yes b. Argumenttoproveyouareright: Arotationmaps∆ only .Therefore,∆ ≅∆ , ≅ , ≅ .∠ ≅∠ because∠ ≅ ∠ andtheyare2linearpairs∠ &∠ and ∠ &∠ .Therefore,thetrianglesarecongruentbySAS. TE‐89 Go Topic:Createbothexplicitandrecursiverulesforthevisualpatterns. 6. Findanexplicitfunctionruleandarecursiverulefordotsinstepn. Step1 Step2 Step3 Explicit: Recursive: , 7. Findanexplicitfunctionruleandarecursiveruleforsquaresinstepn. Explicit: Recursive: , Findanexplicitfunctionruleandarecursiveruleforthevaluesineachtable. 10. 9. 8. Step Value 1 1 2 16 1 5 2 11 3 8 2 25 3 21 4 4 3 125 4 31 5 2 4 625 Explicit: Explicit: Explicit: Recursive: , Recursive: Recursive: ⋅ Topic:Reviewofsolvingequations. Solveeachequationfort. 12. 10 4 12 3 11. 13 SDUHSDMath1Honors ⋅ TE‐98 Name: Constructions 6.7H Ready,Set,Go! Ready Topic:Transformationsoflines Foreachsetoflinesusethepointsonthelinetodeterminewhichlineistheimageandwhichisthe pre‐image,labelthem,writeimagebytheimagelineandpreimagebytheoriginalline.Thendefine thetransformationthatwasusedtocreatetheimage.Finallyfindtheequationforeachline. 2. 1. a. DescriptionofTransformation: translated4unitsup b. Equationforpre‐image: c. Equationforimage: SDUHSDMath1Honors a. DescriptionofTransformation: Reflectabout b. Equationforpre‐image: c. Equationforimage: TE‐99 Set Topic: Trianglecongruenceproperties 3. Truestatements: Conjecture: ≅ ∠ ≅∠ a. Istheconjecturecorrect?Yes ∠ ≅∠ b. Argumenttoproveyouareright: ≅ ≅ because ThetrianglesarecongruentASA.Therefore, theyarecorrespondingpartsofcongruenttriangles. 4. Truestatements: ∠ ≅∠ ≅ bisects∠ Conjecture: a. Istheconjecturecorrect?Yes b. Argumenttoproveyouareright: ThetrianglesarecongruentbySAS.Therefore,∠ ≅∠ becausetheyarecorrespondingpartsofcongruenttriangles. 5. Truestatements: Wisthemidpointof ≅ isperpendicularto Conjecture: a. Istheconjecturecorrect?Yes b. Argumenttoproveyouareright: ThetrianglesarecongruentbySSS.Therefore,∠ ≅∠ becausetheyarecorrespondingpartsofcongruenttriangles. Theyare °togetherand °each. SDUHSDMath1Honors TE‐100 Topic:Geometricconstructions 6. Accordingtotheconstructionshowninthediagramtotheright, whatdowecallsegment ? Altitudeof∆ fromBto 7. Whatdotheconstructionmarksinthefigurebelowcreate? Perpendicularbisectorof 8. Whichdiagramshowstheconstructionofanequilateraltriangle? a. b. c. d. Go Topic:Solvingsystemsofequations Solveeachsystemofequations.Utilizesubstitutionorelimination. 11 4 9 9 9. 10. 2 19 3 6 , , SDUHSDMath1Honors 2 4 11. , 11 2 TE‐101 12. 2 , 1 1 13. SDUHSDMath1Honors 2 3 , 7 8 14. 4 6 2 7 , 8 TE‐109 Name: Constructions 6.8H Ready,Set,Go! Ready Topic:Transformationsoflines,algebraicandgeometricthoughts. Foreachsetoflinesusethepointsonthelinetodeterminewhichlineistheimageandwhichisthe pre‐image,labelthem,writeimagebytheimagelineandpreimagebytheoriginalline.Thendefine thetransformationthatwasusedtocreatetheimage.Finallyfindtheequationforeachline. 2. 1. a. DescriptionofTransformation: a. DescriptionofTransformation: Translateleft7 b. Equationforpre‐image: Rotate °aboutP b. Equationforpre‐image: c. Equationforimage: c. Equationforimage: SDUHSDMath1Honors TE‐110 Set Topic:Transformationsandtrianglecongruence. Determinewhetherornotthestatementistrueorfalse.Iftrue,explainwhy.Iffalse,explainwhynot orprovideacounterexample. 3. Ifonetrianglecanbetransformedsothatoneofitsanglesandoneofitssidescoincidewithanother triangle’sangleandsidethenthetwotrianglesarecongruent. False.ThereisapossibilityofhavingaSSAsituation. 4. Ifonetrianglecanbetransformedsothattwoofitssidesandanyoneofitsangleswillcoincidewithtwo sidesandananglefromanothertrianglethenthetwotriangleswillbecongruent. False.ThereisapossibilityofhavingaSSAsituation. 5. Ifthreeanglesofonetrianglearecongruenttothreeanglesofanothertriangle,thenthereisasequence oftransformationsthatwilltransformonetriangleontotheother. False.Thetrianglesmaybesimilarorcongruent. 6. Ifthreesidesofonetrianglearecongruenttothreesidesofanothertriangle,thenthereisasequenceof transformationsthatwilltransformonetriangleontotheother. True.SSSisoneofthetrianglecongruencies. 7. Foranytwocongruentpolygonsthereisasequenceoftransformationsthatwilltransformoneofthe polygonsontotheother. True.Ifthepolygonsarecongruent,theycanberotated,reflected,and/ortranslatedtotransform oneontotheother. Topic:Geometricconstructions 8. Whenfinishedwiththeconstructionfor“CopyanAngle”,segmentsaredrawnconnectingwherethearcs crossthesidesoftheangles.Whatmethodprovesthesetwotrianglestobecongruent? a. ASA b.SAS c.SSS d.AAS SDUHSDMath1Honors TE‐111 9. Whichillustrationshowsthecorrectconstructionofananglebisector? a. b. Go c. d. Topic:Trianglecongruenceandpropertiesofpolygons. 10. Whatistheminimumamountofinformationneededtodeterminethattwotrianglesarecongruent?List allpossiblecombinationsofneededcriteria. 3piecesofinformation(anglesand/orsides)areneededtodeterminethattwotrianglesare congruent. Possiblecombinationsofneededcriteria:SSS,ASA,SAS,AAS 11. Whatisalineofsymmetryandwhatisadiagonal?Aretheythesamething?Couldtheybethesameina polygon?Ifsogiveanexample,ifnotexplainwhynot. Alineofsymmetrycutsthediagonalintotwocongruentshapesthataremirrorimagesofeach other. Adiagonalconnectstwonon‐adjacentvertices 12. Howisthenumberoflinesofsymmetryforaregularpolygonconnectedtothenumberofsidesofthe polygon?Howisthenumberofdiagonalsforapolygonconnectedtothenumberofsides? Thenumberoflinesofsymmetryforaregularpolygonisthesameasthenumberofsidesofthe polygon. wherenisthenumberofsides. Thenumberofdiagonalsisequationto 13. Whatdorighttriangleshavetodowithfindingdistancebetweenpointsonacoordinategrid? ThePythagoreanTheoremcanbeusedtofindthedistancebetweenpointsonthecoordinate grid. SDUHSDMath1Honors TE‐112 Topic:Findingdistanceandslope. Foreachpairofgivencoordinatepointsfinddistancebetweenthemandfindtheslopeoftheline thatpassesthroughthem.Showallyourwork. 15. 16, 45 34, 75 14. 10, 31 20, 11 a. Slope: b. Distance: a. Slope: b. Distance: 130 √ 16. 8, 21 20, 11 a. Slope: b. Distance: √ SDUHSDMath1Honors 17. 10, 0 14, 18 a. Slope: b. Distance: 30 TE‐127 Module6ReviewHomework 1. Describethesequenceofrigidmotionsthatshows∆ ≅∆ Reflectoverthex‐axisandthentranslateright4units. . 2. Usethecoordinategrid,below,tocompleteparts(a)–(c). a. Reflect∆ acrosstheverticalline,paralleltothe ‐axis,goingthroughpoint 1, 0 .Labelthe transformedpoints as , , ,respectively. SeeimageinREDbelow. acrossthehorizontalline,paralleltothe ‐axisgoingthroughpoint 0, 1 .Label b. Reflect∆ ,respectively. thetransformedpointsof ’ ’ ’as SeeimageinBLUEbelow. . c. Describeasinglerigidmotionthatwouldmap∆ to∆ Rotation °abouttheorigin. SDUHSDMath1Honors TE‐128 3. Pre‐image: 0, 0 , 5, 1 , 5, 4 a. Rotatethefigure 90°abouttheorigin.Labelthe imageas ′ ′ ′. SeeimageinRED. b. Reflect ′ ′ ′overthey‐axis.Labeltheimageas ′′ ′′ ′′. SeeimageinBLUE. c. Translate ′′ ′′ ′′right3unitsanddown1unit. Labeltheimageas ′′′ ′′′ ′′′. SeeimageinGREEN. 4. Pre‐image: 1, 2 , 1, 5 , 4, 4 a. Translatethefigureup2unitsandleft5units. Labeltheimageas ′ ′ ′. SeeimageinRED. b. Reflect ′ ′ ′overthex‐axis.Labeltheimageas ′′ ′′ ′′. SeeimageinBLUE. c. Rotate ′′ ′′ ′′180°abouttheorigin.Labelthe imageas ′′′ ′′′ ′′′. SeeimageinGREEN. SDUHSDMath1Honors TE‐129 5. Pre‐image: 3, 1 , 2, 1 , 2, 2 Performthefollowingsequenceoftransformations: Reflecttheimageoverthegivenline(lineL),then rotate180°aroundtheorigin,thentranslateup5 units. Topic:Rotationsymmetryforregularpolygonsandtransformations 6. Whatanglesofrotationalsymmetryarethereforaregularpentagon? 72°,144°,216°,288°,360° 7. Whatanglesofrotationalsymmetryarethereforaregularhexagon? 60°,120°,180°,240°,300°,360° 8. Ifaregularpolygonhasanangleofrotationalsymmetrythatis40°,howmanysidesdoesthepolygon have? 9sides SDUHSDMath1Honors TE‐130 Oneachgivencoordinategridbelowperformtheindicatedtransformation. 10. RotateP 90° aroundpointC. 9. ReflectpointPoverlinej. Topic:Connectingtableswithtransformations. Foreachfunctionfindtheoutputsthatfillinthetable.Thendescribethe relationshipbetweentheoutputsineachtable. 2 12. 4 2 3 11. 1 2 1 1 4 2 4 2 2 16 3 6 3 0 3 64 4 8 4 2 4 256 SDUHSDMath1Honors 4 1 2 3 1 4 4 Relationshipbetween and isalways6lessthan : Relationshipbetweent(x)andh(x): isalways3stepsbehind TE‐131 Ineachfigurefindandmarkatleastfourpossiblecentersofrotationthatwouldworkforrotating thepre‐imagepointtotheimagepoint. 13. 14. Centersofrotation: Answersmayvary. . Anypointontheline Centersofrotation: Answersmayvary. Anypointonthelines . Findthepointofrotationthatmapseachpre‐imagetotheimage. 15. 16. , SDUHSDMath1Honors , TE‐132 Findthelineofreflectionthatmapseachpre‐imagetotheimage. 17. 18. Topic:Constructingregularpolygonsinscribedinacircle 19. Constructanisoscelestrianglethatincorporates asoneofthesides.Constructthecirclethat circumscribesthetriangle. SDUHSDMath1Honors TE‐133 20. Constructahexagonthatincorporates hexagon. 21. Constructasquarethatincorporates square. SDUHSDMath1Honors asoneofthesides.Constructthecirclethatcircumscribesthe asoneofthesides.Constructthecirclethatcircumscribesthat IntrotoModule7Honors‐GotheDistance ADevelopUnderstandingTask TheperformancesofthePodunkHighSchooldrillteamareverypopularduringhalf‐ timeattheschool’sfootballandbasketballgames.WhenthePodunkHighSchool drillteamchoreographsthedancemovesthattheywilldoonthefootballfield,they layouttheirpositionsonagridliketheonebelow: Inoneoftheirdances,theyplantomakepatternsholdinglong,wideribbonsthatwillspanfromonedancer inthemiddletosixotherdancers.Onthegrid,theirpatternlookslikethis: Thequestionthedancershaveishowlongtomaketheribbons.Somedancersthinkthattheribbonfrom Gene(G)toCasey(C)willbeshorterthantheonefromGene(G)toBailey(B). 1. Howlongdoeseachribbonneedtobe? EachRibbonneedstobe5unitslong 2. Explainhowyoufoundthelengthofeachribbon. UsePythagoreanTheoremforeachribbon,exceptforGFandGC. SDUHSDMath1Honors TE‐134 TE‐135 Whentheyhavefinishedwiththeribbonsinthisposition,theyareconsideringusingthemtoformanew patternlikethis: 3. WilltheribbonstheyusedinthepreviouspatternbelongenoughtogobetweenBailey(B)andCasey(C) inthenewpattern?Explainyouranswer. Yes,becausetheywillonlyneed√ √ units,whichislessthan5. SDUHSDMath1Honors TE‐136 Genenoticesthatthecalculationssheismakingforthelengthoftheribbonsremindsherofmathclass.She saystothegroup,“Hey,Iwonderifthereisaprocessthatwecoulduselikewhatwehavebeendoingtofind thedistancebetweenanytwopointsonthegrid.”Shedecidestothinkaboutitlikethis: “I’mgoingtostartwithtwopointsanddrawthelinebetweenthemthatrepresentsthedistancethatI’m andB , .Hmmmm.... lookingfor.Sincethesetwopointscouldbeanywhere,InamedthemA , whenIfiguredthelengthoftheribbons,whatdidIdonext?” 4. Thinkbackontheprocessyouusedtofindthelengthoftheribbonandwritedownyourstepshere, usingpointsAandB. 5. Usetheprocessyoucameupwithinquestion4tofindthedistancebetweentwopointslocatedat 1, 5 and 2, 6 √ 6. Useyourprocesstofindtheperimeterofthehexagonpatternshownabovequestion3. √ SDUHSDMath1Honors IntrotoModule7Honors‐Ready,Set,Go! Ready Topic:Findingthedistancebetweentwopoints Usethenumberlinetofindthedistancebetweenthegivenpoints.(Note:The notationABmeansthedistancebetweenpointsAandB.) 1. AE 2. GB 3. BF 6 7.5 6 4. Describeawaytofindthedistancebetweentwopointsonanumberlinewithoutcountingthespaces. Findtheabsolutevalueofthedifferencebetweenthepoints Topic:Graphinglines. Thegraphattherightisoftheline . 5. Onthesamegrid,graphaparallellinethatis4unitsbelowit. Dashedlineatright 6. Writetheequationofthenewline. 7. Writethey‐interceptofthenewlineasanorderedpair. , 8. Writethex‐interceptasanorderedpair. , 9. a. Writetheequationofthenewlineinpoint‐slopeform usingthey‐intercept b. Writetheequationofthenewlineinpoint‐slopeformusingthex‐intercept. c. Explaininwhatwaytheequationsin5aand5barethesameandinwhatwaytheyaredifferent. Simplifiedequationsareequivalent.Differenceisinthestartingpoint. SDUHSDMath1Honors TE‐137 TE‐138 Set Topic:Slopetrianglesandthedistanceformula. ∆ isaslopetrianglefor whereBCistheriseandACistherun.Noticethatthelengthof hasa correspondinglengthonthey‐axisandthelengthof hasacorrespondinglengthonthex‐axis.Theslope formulaiswrittenas wheremistheslope. 10. a. Whatdoesthevalue tellyou? theverticaldistance tellyou? b. Whatdoesthevalue thehorizontaldistance Inthepreviousmoduleyoufoundthelengthofaslantedlinesegmentbydrawingtheslopetriangleand performingthePythagoreanTheorem.Inthisexercisetrytodevelopamoreefficientmethodoffindingthe and combinedwiththePythagorean lengthofalinesegmentbyusingthemeaningof Theorem. 12. FindAB 11. FindAB √ . SDUHSDMath1Honors TE‐139 Go Topic:Rectangularcoordinates Usethegiveninformationtofillinthemissingcoordinates.Thenfindthelengthoftheindicatedline segment. Coordinatesongraphsareintentionallyleftblank 13. a. FindHB 20 b. FindBD 10 Topic:Writingequationsoflines. Writetheequationofthelineinpoint‐slopeformusingthegiveninformation. 15. 11, 3 , 6, 2 14. Slope= point(12,5) 16. x‐intercept: 2,y‐intercept:‐3 18. Slope: ,x‐intercept:5 SDUHSDMath1Honors 19. 10,17 , 17. Allx valuesare‐7,y canbeanything 13, 17 TE‐140 EndofModule6HonorsChallengeProblems ThefollowingproblemsareintendedforstudentstoworkonafterModule6HTest.Theproblemsfocuson usingsimilartrianglestofindarea.ThenextmodulebuildsontheideaofconnectingAlgebraandGeometry. Thefollowingpageisblankfortheteachertocopyandgivetoeachstudentafterthetest.Belowarethe solutions. BothrighttriangleABCandisoscelestriangleBCD,shownhere,haveheight5cmfrombase 12cm.Use thefigureandinformationprovidedtoanswerthefollowingquestions. 1. WhatistheabsolutedifferencebetweentheareasofΔABCandΔBCD? TheareasofΔABCandΔBCDcanbedenotedby[ΔABC]and[ΔBCD],respectively.Thisnotation willbeusedtodenotetheareasofthetrianglesthroughoutthissolutionset.SinceΔABCand .Therefore, ΔBCDbothhavebase cmandheight5cm,itfollowsthat becausethetwotriangleshavethesamearea,theabsolutedifferenceintheareasis . 2. WhatistheratiooftheareaofΔABEtoΔCDE? Fromthefigure,weseethat .Similarly, . Again,since ,wecanwritethefollowingequation: ,sotheratio . .Whensimplified,wehave 3. WhatistheareaofΔBCE? ThefigureshowsaltitudeEYofΔBCEandaltitudeDXofΔBCD,bothdrawnperpendiculartobase BC.Noticethat ~ ,whichmeansthelengthsofcorrespondingsidesareproportionate. cm2. Also,noticethat ~ .Itfollows,then,that 4. WhatistheareaofpentagonABCDE? Therefore,theareaofpentagonABCDEis – – – 2 cm . SDUHSDMath1Honors
© Copyright 2026 Paperzz