Ideal Tx-Line Reflection 吳瑞北 Rm. 340, Department of Electrical Engineering E-mail: [email protected] google: rbwu S. H. Hall et al., High-Speed Digital Design, Chap.3 N. N. Rao, Elements of Engineering Electromagnetics, Chap. 6 1 What will you learn? • How to solve circuits with ideal lossless tx-line? • Is there easier “analytic” equ. circuit model. • How to solve “analytically” tx-line circuits with R, L, and C loading/discontinuities? • How does reflection come from? How to deal with multiple reflection phenomenon? • How to measure? Operation principle of TDR. • How to extract tx-line parameters & discontinuities from TDR measurement? • How to mitigate reflection? R. B. Wu 2 Contents • • • • • Analytic Tx-Line Analysis Reflections from Resistive Loads Reflection from Reactive Loads Time Domain Reflectometry Termination Designs R. B. Wu 3 Analytic Tx-Line Analysis 4 Distributed Element Tx-line is also called a distributed element vS(t) vA(t) iA(t) i(z,t) + v(z,t) vB(t) iB(t) _ i(z,t) • vs. lumped elements ZS, ZL. • Note the reference of V(z,t). GROUND • Where is the ground of tx-line? • I(z,t) must accompany the return-path current. • How to interpret a negative I(z,t)? • How to solve circuits with a distributed circuit element? R. B. Wu 5 Eq. Circuit Model for SPICE Simulation Rule of Thumb: 1. Decide # of segments 10 tr v p 2. Choose R, L, C, G segment R, L, C, G * # Note: TDsegment t r 10 # max freq. 10 R. B. Wu Equivalent Circuit Seen from Both Ends V ( z, t ) V t vzp V t vzp I ( z, t ) VA (t ) V (0, t ) V t V t V (t ) V (, t ) V 1 V t vzp V t vzp Z0 B I B (t ) I (, t ) 1 I A (t ) I (0, t ) V t V t Z0 t T V t T 1 V t T V t T Z0 VB (t ) Z 0 I B (t ) VA (t ) Z 0 I A (t ) 2V ( z , t ) 2V ( z 0, t T ) 2V ( z 0, t ) 2V ( z , t T ) V VB V ; V VA V R. B. Wu Ref.: F. H. Branin, Jr., “Transient analysis of lossless transmission lines,” Proc. IEEE, vol. 55,7 pp. 2012-2013, Nov. 1967. Circuit Modeling A B Z0 ; T VA Z0 Z0 EA VB EB Equivalent circuit Time delay Impedance * voltage controlled voltage source E A ( t ) 2v B ( t T ) E B ( t T ) Rem: Only 4 lumped elements, even for very long tx-line. E B ( t ) 2v A ( t T ) E A ( t T ) R. B. Wu 8 Time Marching At source end Zs t T 2T 3T Z0 Z0 VA (t) Vs (t) VS (t ) VA(t) x x x x x x x x x At load end x x x x x x x x x EA (t) E A(t) 0 0 0 0 0 0 x x x V ( 0,t) x x x x x x x x x VB (t) EB (t) V ( ,t) 0 0 0 x x x x x x EB (t) 0 0 0 x x x x x x ZL VB (t) 0 0 0 x x x x x x R. B. Wu 9 Reflections from Resistive Loads 10 Time-Domain Sol. w/o Simulator 1. Determine launch voltage & final “DC” or “t =0” voltage 2. Calculate load reflection coefficient and voltage delivered to the load 3. Calculate source reflection coefficient and resultant source voltage R. B. Wu 11 Determine Launch Voltage TD I+ Rg Vs B Zo Vs 0 V Rs A Rt + V0 (initial voltage) t=0, V=Vi Z=0 I+ Rg Z0 V0 V+ Vi = VS Z0 Z0 + RS Vf = VS Rt Rt + RS Z=0 Step 1: determine launch voltage – Simply a voltage divider! R. B. Wu 12 Voltage Delivered to Load TD Vs Rs A Vs 0 B Zo VB Z0 Rt RL 2Ei (initial voltage) t=0, V=Vi rB Rt Zo Rt Zo (signal is reflected) for t d RL t=TD, V=Vi +rB (Vi ) Vreflected = rB (Vincident) VB = Vincident + Vreflected VB 2V Z 0 RL V VB V I V Z 0 Step 2: determine VB at t = TD − − − − Tx-line delays the arrival of launched voltage until t = TD. VB for 0 < t < TD is at quiescent voltage (0 in this case) Voltage wavefront will be reflected at tx-line end R. B. Wu VB = Vincident + Vreflected at t = TD 13 ; Voltage Reflected back to Source Vs 0 Rs A Vs rA B Zo rB Rt TD IA (initial voltage) VA Z0 t=0, V=Vi Rg 2Er V0 Z=0 t=2TD, V=Vi + rB (Vi) + rAr B )(Vi ) (signal is reflected) t=TD, V=Vi + rB (Vi ) R. B. Wu 14 Voltage Reflected Back to Source rA Zo Rs Rs Zo Vreflected = rA (Vincident) VA = Vlaunch + Vincident + Vreflected Step 3: Determine VA at t = 2TD − − − − Tx-line delays the arrival of voltage reflected from load until t = 2TD. VA at time 0 < t < 2TD is at launch voltage Voltage wavefront will be reflected at source VA = Vlaunch + Vincident + Vreflected at t = 2TD In steady state, sol. converges to VB = VS [Rt/(Rt + Rs)] R. B. Wu 15 Lattice (Bounce) Diagram R. B. Wu 16 1st Reflection vs. 1st Incident Switching Open-circuited line Γ R 1 (VB 2V ) Termination by Z 0 Γ R 0 (VB V ) • Applications First reflection switching First incident switching R. B. Wu 17 Over Driven Tx-Line (Under Damped) V(source) 2v V(load) Zs TD = 250 ps Vs rsource 0. 3333 Time V(source) 0 500 ps 1.33v Assume Zs=25 ohms Zo =50ohms Vs=0-2 volts Vinitial Vs rload 1 1.33v 50 Zo (2) ÷ 1.3333 Zs Zo 25 50 rsource Zs Zo 25 50 0.33333 V(load) Zs Zo 25 50 50 rload Zl Zo 1 0v Zl Zo 50 1.33v Response from lattice diagram 1000 ps 2.66v -0.443v 3 2.5 1500 ps 2.22v -0.443v 2000 ps Volts 0 Zo 1.77v 2 1.5 Source 1 0.5 0.148v Load 0 0 2500 ps 1.92 0.148v 250 500 750 1000 1250 1500 1750 2000 2250 Time, ps 2.07 R. B. Wu 18 Under Driven Tx-Line (Over Damped) 2v 0 Vs Zo V(source) Zs TD = 250 ps r source 0 . 2 r load 1 V(load) Time V(source) 0 Assume Zs=75 ohms Zo=50ohms Vs=0-2 volts V(load) 0.8v Vinitial Vs r source 0v 500 ps rload 0.8v 0.8v 1000 ps Zo 50 (2) 0.8 Zs Zo 75 50 Zs Zo 75 50 0.2 Zs Zo 75 50 Zl Zo 50 1 Zl Zo 50 1.6v Response fr om lattice diagram 0.16v 2.5 1500 ps 1.76v 2 2000 ps 2500 ps 1.92v 0.032v V olt s 0.16v 1.5 Sour ce 1 Load 0.5 0 0 2 50 500 750 Tim e , ps 1000 1250 R. B. Wu 19 Effects of Rise Time – overdriven case R. B. Wu 20 Effects of Rise Time – underdriven case R. B. Wu 21 Reflection and Transmission Incident r 1r Transmitted Reflected Reflection Coefficient Zt Z0 r Zt Z0 Transmission Coefficient =1+r 1 2Zt Zt Z0 Zt Z0 Zt Z0 R. B. Wu 22 Multiple line impedance R. B. Wu 23 R. B. Wu 24 Multi Receivers Topology l2 Rs=Zs l1 Z0 Receiver 1 Z 0 Rs 50 Z0 l1 l3 250 ps; l3 > l2 l2 125 ps; Receiver 2 0-2V Z0 2 Z0 2 Z0 13 Z0 2 Z0 T2 1 2 2 3 3 13 ; T3 2 3 4 1; 5 1 Eig 3-35 v 4 3 v 8 9 v 52 27 vA 4 3 vB 20 9 R. B. Wu 25 Effects of Non-symmetry l2 Rs=Zs l1 Z0 Receiver 1 Z0 l3 > l2 Receiver 2 0-2V Z0 R. B. Wu 26 Ringing Noise on Address Lines of DDR v p 3 108 / 2.5; Rs 3.27 104 s m1 tanD 0.02; TD3 L3 / v p 100ps Tt Lt / v p 214ps; t l / v p Short End L1=(Lt-Δl)/2 Z0 L3 0-1.5V Tr=200ps Z0, vp, Rs, tanD L2=(Lt+Δl)/2 Long End Ringing Effect 2 2 1.5 1.5 l/Lt=0 1 Voltage(V) Voltage(V) Ringing Effect l/Lt=0.2, Short End l/Lt=0.2, Long End 0.5 l/Lt=0.6, Short End 0.5 l/Lt=0.8, Short End l/Lt=0.6, Long End l/Lt=0.8, Long End l/Lt=0.4, Short End 0 -0.5 0 1 0 l/Lt=0.4, Long End 0.5 1 1.5 time(ns) 2 2.5 3 -0.5 0 0.5 1 R. 1.5B. Wu 2 time(ns) 27 2.5 3 RLC Resonance Model of Ringing Noise • The total response can be divided into the balanced response and the ringing noise response. The ringing noise response can be fitted as a RLC resonance response • Tt l sin 2 b 2 Lt v 0 p 2 Tt l sin 2 Lt A l sin 2 0 Lt 2 Lt j Step Response, l/Lt=0.12 2 0 0 0.884m1 1.5 v0 Z0 Z0, L3 Z0/2 0-1.5V Tr=200ps L vstep(t-TD) 0-1.5V Tr=200ps TD=L3/vp v0 veq vn Avn veq v0 vn Equivalent Balanced Ringing noise response response response Voltage(V) 0 Balanced Precise, short end Model, short end Precise, long end Model, long end Ringing 1 0.5 0 -0.5 0 0.5 1 1.5 time(ns) 2 2.5 R. B. Wu 28 3 Eye Height – Bit rate Influence • Worst case occurs at UI/Tt is odd. UI/Tt=4, Δl/Lt=0.12 Eye Height/Vh 7 6 0.6 0.6 0.6 0.6 1 0 00.4.2 0.4 0.2 0.4 0.6 0 0.1 0.6 0.6 2 0.4 0.2 0 0.4 0 UI/Tt 0.6 4 3 0% 0.8 0.6 5 UI/Tt=3, Δl/Lt=0.12 0.8 0.8 65% 0.8 0.4 0.2 0.2 0.3 l/Lt 0.4 0 0.2 0.4 0.6 0.6 0.5 R. B. Wu 0.6 29 Eye Height – Leg Difference Influence Eye Height/Vh • Worst case occurs at where the max 7 of A occurs. 0.8 l 2 0 Lt 0.12 L 0.6 0.6 0.6 4 0.6 0.6 1 UI/Tt=3, Δl/Lt=0.12 0 00.4.2 0.4 0.2 0.4 0.6 0 0.1 0.6 0.6 2 0.4 0.2 0 0.4 0 UI/Tt 0.8 0.6 5 3 0% 0.8 0.8 6 0.4 0.2 0.2 0.3 l/Lt 0.4 0 0.2 0.4 0.6 0.5 Ref: K.-Y. Yang, et al., “Modeling and fast eye- diagram estimation of ringing effects on branch line structures,” IEEE T-CPMT, Apr. 2014. 0.6 0.6 UI/Tt=3, Δl/Lt=0.6 62% R. B. Wu 30 Effect of a Long Stub R. B. Wu 31 Reflections from Reactive Loads 32 Inductive Termination t=0 for t T l u R0 LL V0 / 2 LL R0 diL R0 iL 2v V0 dt iL (t ) VR0 1 e ( t T )R0 LL 0 ( t T )R0 LL vL (t ) v(l , t ) V0e V0 z=0 z=l z = z1 iL(t) v (l , t ) v(l , t ) V0 2 v (0, t ) V0 2 R0 for t 0 v(l,t) v(l,t) 2v+(0, t-T) v(l,t) for 2T t T LL z1 l u t T V0 V0 V0 / 2 T LL R0 t z = z1 z=l z R. B. Wu Capacitive Termination t=0 for t T v (l , t ) v(l , t ) V0 2 R0 R0 CL z=0 V0 z=l z = z1 z1 l u t1 T v(z,t1) V0 iL(t) V0 / 2 v (0, t ) V0 2 for t 0 R0 v(l,t) 2v+(0, t-T) v(l,t) V0 CL v(z1,t) z = z1 z=l z V0 V0 / 2 0 T t T t1 t R. B. Wu Time Domain Reflectometry 36 Time-Domain Reflectometry • Key advantages over frequency measurement – Ability to extract electrical data relevant to digital systems – Can extract impedance, velocity, tx-line parameters, and model parameters of discontinuities. • Basic theory 1 r Z DUT Z o ; 1 r Vreflected Z DUT Z o r Vincident Z DUT Z o R. B. Wu 37 at node A Impedance & Velocity R. B. Wu 38 Peeling Idea for Reflections • Multiple reflections. • Need minimize reflections prior to DUT & TDR – Use a controlled-impedance, low-loss cable btw TDR & probe – Use a low-loop-inductance, controlled-impedance probe J. M. Jong and V. K. Tripathi, IEEE T-CHMT, pp. 497-504, Aug . 1992 J. M. Jong, B. Janko and V. K. Tripathi, IEEE T-CHMT, pp. 119-126, Feb. 1993 R. B. Wu 41 Inductive Load in Middle of a Line r max 2Z t 0r L L 1 e 2tr Z 0 vs vs L Aind ; 4Z0 vs: excitation voltage R. B. Wu 42 Capacitive Load in Middle of a Line CD VB-Ei Vr Tw,50 Acap vs Z 0C ; 4 R. B. Wu 43 Discontinuity Loading R. B. Wu 44 Equally Spaced Capacitive Loads Z 0 49.7 d 0.573ns C L 2 pF t r 0.35ns R. B. Wu 45 FLY-BY Topology in DIM and Modeling A B C Simulation Model f= 800 MHz Tr=125 ps Voltage = 1.5v + A thick trace (10mil) R1= 40 ohm _Microstrip (10 mil) Stripline (10 mil) thin trace (trace width: 4mil) Package + B _ stripline (4 mil) R R R R R R R R L L L L L L L L C C C C C C C + C _ R2= 40 ohm C TDR at A and TDT at B will be considered under DDR3 to discuss effects of FLY-BY trace design (width 10mil vs. 4mil). R. B. Wu 46 Simulation Results A R1= 40 ohm trace width Microstrip (10 mil) Stripline (10 mil) stripline (4 mil) f= 800 MHz + B _ Tr=125 ps R R L L C R2= 40 ohm C 1 1 VA TDR 0.8 Voltage (V) 0.8 Voltage (V) VB TDT 0.6 0.4 0.6 0.4 0.2 0.2 Trace W idth = 4 m il Trace Width = 10 mil Trace W idth = 4 m il Trace Width = 10 mil 0 0 0 1 2 3 Time (nSec) 4 5 6 0 1 2 3 4 5 6 Time (nSec) Suitable trace width (thin trace) improves impedance match. H.-H. Chuang, et al., “Signal/power integrity modeling of high-speed memory modules using chip-package-board co-analysis,” IEEE T-EMC, May 2010. R. B. Wu 47 Inductance Measurement by TDR Z0 L Z0 Voc 0 vs ,DUT (t ) vs ,ref (t ) dt Rem.: different formula if matched at right end R. B. Wu 48 Capacitance Measurement by TDR Z0 1 C Z 0Voc 0 vo,ref (t ) vo,DUT (t ) dt R. B. Wu 49 Termination Design 50 Termination Schemes to minimize reflection noise • Decrease system frequency • Shorten PCB traces • Termination with matched impedance – Source termination • On-die source termination • Series source termination – Parallel termination (Load termination) • Load termination with a resistive load • AC load termination • Active termination Ref.: H. Johnson & M. Graham, High-Speed Digital Design, Sec.6.1-4 R. B. Wu 51 Source Termination • On-die source termination Difficult to guarantee matched buffer impedance! • Series source termination Add cost to board, and consumes board area! R. B. Wu 52 SI is about Finding & Fixing Problems 3 inch long PCB Trace 3 inch long PCB Trace Series termination (~40 Ohms) R. B. Wu 53 Source Termination suggested : Rs Rop Z 0 overshoot T10-90 2.2 RC 2.2Z 0C 2 VDD 1 E 2 f 2 R Power 2 (Pulse Freq.) f VDD 2R R. B. Wu 54 Load Termination • Load termination with a resistive load Power delivery and thermal problems! • AC load termination Capacitor value need be optimized for specific design R. B. Wu Capacitive loading increases signal delay! 55 Load Termination Eq. ckt CD Tterm. 2.2 RC 2.2 C ( RL // Z 0 ) 1.1Z 0C 2 net risetime : Tterm tr2 Too much power consumption! R. B. Wu 56 Split Termination match R1 // R2 Z 0 Pload (VHI VEE ) 2 (VLO VEE ) 2 2 R2 (VCC VHI ) 2 (VCC VLO ) 2 2 R1 ( V ) 2 2Z 0 R. B. Wu 57 Load Termination for Multiple Lines • Bifurcated line with matched trace impedance • Daisy-chain configuration Cap. of each short stub adds to cap. load of receiver End termination R. B. Wu 58 AC Load Termination R1C clock time • Power saving (in DC-balanced circuit) PR1 ( V / 2 ) 2 Z0 ( V ) 2 4Z0 R. B. Wu 59 Match by Series/Parallel Termination Parallel termination R. B. Wu 60 Active Termination V 25 Ω L H V 1 25 Ω H L 2/3 TTL / CMOS 50 Ω Clamp to -1V on HIGHto-LOW (limit signal undershoot) L R0 L L L L Suitable for any Z0 Power saving L Voo ECL 0.1 μF Vbb R. B. Wu 61 Comparisons • Rise time of an end-terminated circuit, when capacitively loaded, is half of a series-terminated line driving same load. • Most TTL or CMOS gates can’t source enough current to drive end terminators. Split termination or capacitive termination can be a remedy. • One can daisy-chain receivers on an end-terminated line. • At low-pulse repetition rates, source terminations dissipates little power. 2 V 1 • Peak drive power for source-terminated line is 2 R same as end-terminated line (biased at halfway point) R. B. Wu 62 Did you learn? • What’s diff. of “distributed” from “lumped” circuits? • How to solve “analytically” tx-line circuits with R, L, and C loading/discontinuities? • Load & source reflection coeff. & bounce diagram. • Operation principle of time domain reflectometry. • How to extract tx-line parameters & discontinuities from TDR measurement? • How to mitigate reflection? R. B. Wu 63 References & Further Reading • F. H. Breanin, Jr., “Transient analysis of lossless transmission lines,” IEEE Proc. Lett., pp.2012-2013, 1967. • J. M. Jong, B. Janko, and V. K. Tripathi, “Equivalent circuit modeling of interconnects from time-domain measurements,” IEEE T-CHMT, vol. 16, pp. 119-126, Feb. 1993. • M.-H. Wang and R.-B. Wu, “Measuring method for equivalent circuitry,” USA Patent 6,137,293, Oct. 2000. • H.-H. Chuang, et al., “Signal/power integrity modeling of high-speed memory modules using chip-package-board coanalysis,” IEEE T-EMC, vol. 52, pp. 381-391, May 2010. • K.-Y. Yang, et al., “Modeling and fast eye-diagram estimation of ringing effects on branch line structures,” IEEE T-CPMT, Apr. 2014. • A. Boutar, et al., "An efficient analytical method for electromagnetic field to transmission line coupling into a rectangular enclosure excited by an internal source", IEEE T-EMC, pp. 1-9, 2015. R. B. Wu 64 References & Further Reading • A. Beygi and A. Dounavis, "Analysis of excited multi-conductor transmission lines based on the passive method of characteristics macro-model," IEEE T-EMC, vol. 54, pp. 1281 - 1288 , Dec. 2012. • F. Capolino, et al., "Equivalent transmission line model with a lumped X-circuit for a meta-layer made of pairs of planar conductors,” IEEE T-AP, vol. 61, pp. 852-861, Feb. 2013. • G. Lugrin, et al., "High-frequency electromagnetic coupling to multiconductor transmission lines of finite length,” IEEE T-EMC, vol. 57, pp. 1714-1723, Dec. 2015. • M. Chernobryvko, D. De Zutter, and D. Vande Ginste, "Nonuniform multi-conductor transmission line analysis by a two-step perturbation technique", IEEE T-CPMT, vol. 4, pp. 1838-1846, Nov. 2014. • G. Antonini, et al., "Review of Clayton R. Paul studies on multiconductor transmission lines", IEEE T-EMC, vol. 55, pp. 639-647, Aug. 2013. R. B. Wu 65
© Copyright 2026 Paperzz