ACCEL. PRE-CALCULUS/TRIG 3 Double Angle Formulas: π ππ2π₯ = 2π πππ₯πππ π₯ Name:_________________________________ Date:_____________ πππ 2π₯ = πππ 2 π₯ β π ππ2 π₯ = 2πππ 2 π₯ β 1 = 1 β 2π ππ2 π₯ 2π‘πππ₯ π‘ππ2π₯ = 1βπ‘ππ2 π₯ Double Angle Examples: 3 1) If sin x= 4 in Quadrant I, find each of the double angle values. a) sin 2x= 2) If cos x= β24 25 a) sin 2x= b) cos 2x= c) tan 2x= in Quadrant III, find each of the double angle values. b) cos 2x= c) tan 2x= Verifying Identities Double Angle Formulas EXAMPLES: 1) cos 4 x β sin4 x = cos2x Deriving a Triple Angle Formula 1) sin 3x = 2) sin2x = β2sinxsin(x β 90°) Half Angle Formulas: π₯ 1βπππ π₯ π ππ 2 = ±β 2 π₯ 1+πππ π₯ πππ 2 = ±β π₯ 1βπππ π₯ π‘ππ 2 = ±β1+πππ π₯ = 2 Half Angle Examples: 3 1) If sin x= 5 in Quadrant II, find each of the half angle values. π π a) sin π = π b) cos π= c) tan π= 1 2) If cos x= β 2 in Quadrant III, find each of the half angle values. π a) sin = π Putting it all together: 1) cos 15° π π b) cos = c) tan = π π 2) sin 120° 1βπππ π₯ π πππ₯ π πππ₯ = 1+πππ π₯
© Copyright 2026 Paperzz