Double Angle Examples: 1) If sin x= in Quadrant I, find each of the

ACCEL. PRE-CALCULUS/TRIG 3
Double Angle Formulas:
𝑠𝑖𝑛2π‘₯ = 2𝑠𝑖𝑛π‘₯π‘π‘œπ‘ π‘₯
Name:_________________________________ Date:_____________
π‘π‘œπ‘ 2π‘₯ = π‘π‘œπ‘  2 π‘₯ βˆ’ 𝑠𝑖𝑛2 π‘₯
= 2π‘π‘œπ‘  2 π‘₯ βˆ’ 1
= 1 βˆ’ 2𝑠𝑖𝑛2 π‘₯
2π‘‘π‘Žπ‘›π‘₯
π‘‘π‘Žπ‘›2π‘₯ = 1βˆ’π‘‘π‘Žπ‘›2 π‘₯
Double Angle Examples:
3
1) If sin x= 4 in Quadrant I, find each of the double angle values.
a) sin 2x=
2) If cos x=
βˆ’24
25
a) sin 2x=
b) cos 2x=
c) tan 2x=
in Quadrant III, find each of the double angle values.
b) cos 2x=
c) tan 2x=
Verifying Identities Double Angle Formulas
EXAMPLES:
1) cos 4 x βˆ’ sin4 x = cos2x
Deriving a Triple Angle Formula
1) sin 3x =
2) sin2x = βˆ’2sinxsin(x βˆ’ 90°)
Half Angle Formulas:
π‘₯
1βˆ’π‘π‘œπ‘ π‘₯
𝑠𝑖𝑛 2 = ±βˆš
2
π‘₯
1+π‘π‘œπ‘ π‘₯
π‘π‘œπ‘  2 = ±βˆš
π‘₯
1βˆ’π‘π‘œπ‘ π‘₯
π‘‘π‘Žπ‘› 2 = ±βˆš1+π‘π‘œπ‘ π‘₯ =
2
Half Angle Examples:
3
1) If sin x= 5 in Quadrant II, find each of the half angle values.
𝒙
𝒙
a) sin 𝟐 =
𝒙
b) cos 𝟐=
c) tan 𝟐=
1
2) If cos x= – 2 in Quadrant III, find each of the half angle values.
𝒙
a) sin =
𝟐
Putting it all together:
1) cos 15°
𝒙
𝒙
b) cos =
c) tan =
𝟐
𝟐
2) sin 120°
1βˆ’π‘π‘œπ‘ π‘₯
𝑠𝑖𝑛π‘₯
𝑠𝑖𝑛π‘₯
= 1+π‘π‘œπ‘ π‘₯