Graphing the sine curve

Graphing the sine curve
Set your window range to x min=0 x max =2π, y min -10, y max = 10
Using your calculator draw a graph of each of the following equations.
Compare each graph to the base graph y = sin x, and make a conjecture
about the effect of multiplying a constant by the sin x.
1. y = 4 sin x
2. y = 6 sin x
3. y = 1/2 sin x
4. y = 3/4 sin x
1
Graph the following, note the changes.
1. y = ­4 sin x
2. y = ­6sin x
3. y = ­1/2 sin x
4. y = ­3/4 sin x
2
Change your window to x min = 0 x max = 10 y min = ­1 y max = 1
1. y = sin 2x
2. y = sin (πx)
3. y = sin (π/2x)
4. y = sin 10x
3
Change your window range to x min = 0 x max = 2π y min = -10 y max = 10
1. y = sin x + 2
2. y = sinx + 5
3. y = sin x - 1
4. y = sin x - 6
4
Testing your conjectures:
Sketch the following graphs without using your calculator:
1. y = 1/2sinx
For the graphs stae the min, max, amplitude, period and midline
2. y = sin (3x) + 2
3. y = 4 sin(2x) + 1
4. y = 2 sin (π/2x)
5. y = sin(2πx)+1
6. y = 2 sin (πx)+3
5
6
4. y = 2cos (π/2x)
5. y = cos(2πx)+1
6. y = 2 cos (πx)+3
7
8
9
10
11
12
hw: p912 3­19 odd
p 918 9­12, 22­24
13
14
15