Partial Fraction Decomposition UVU Math Lab Using Systems of Equations: Find the partial fraction decomposition for the following rational expression: 2 π₯π₯ 5 +π₯π₯ 3 βπ₯π₯ 4 βπ₯π₯ 2 STEP 1: Factor the denominator and set expression equal to the form of partial fraction decomposition with the unknown constants (A, B, C,β¦) in the numerators of the decomposition. 2 ππππ (ππβππ)(ππππ +ππ) π΄π΄ π΅π΅ πΆπΆ = π₯π₯ + π₯π₯ 2 + π₯π₯β1 + π·π·π·π·+πΈπΈ π₯π₯ 2 +1 STEP 2: Multiply both sides by the LCD to eliminate denominators and multiply through. π₯π₯ 2 (π₯π₯ β 1)(π₯π₯ 2 + 1) β 2 π΄π΄ π΅π΅ πΆπΆ π·π·π·π· + πΈπΈ 2 = β π₯π₯ 2 (π₯π₯ β 1)(π₯π₯ 2 + 1) + 2 β π₯π₯ 2 (π₯π₯ β 1)(π₯π₯ 2 + 1) + β π₯π₯ 2 (π₯π₯ β 1)(π₯π₯ 2 + 1) + 2 β π₯π₯ (π₯π₯ β 1)(π₯π₯ 2 + 1) π₯π₯ 2 (π₯π₯ β 1)(π₯π₯ 2 + 1) π₯π₯ π₯π₯ π₯π₯ β 1 π₯π₯ + 1 2 = π΄π΄π΄π΄(π₯π₯ β 1)(π₯π₯ 2 + 1) + π΅π΅(π₯π₯ β 1)(π₯π₯ 2 + 1) + πΆπΆπ₯π₯ 2 (π₯π₯ 2 + 1) + (π·π·π·π· + πΈπΈ)π₯π₯ 2 (π₯π₯ β 1) 2 = π΄π΄π₯π₯ 4 +π΄π΄π΄π΄ 2 βπ΄π΄π΄π΄ 3 β π΄π΄π΄π΄+π΅π΅π΅π΅ 3 + π΅π΅π΅π΅βπ΅π΅π΅π΅ 2 β π΅π΅+πΆπΆπΆπΆ 4 +πΆπΆπΆπΆ 2 +π·π·π·π· 4 βπ·π·π·π· 3 +πΈπΈπ₯π₯ 3 βπΈπΈπΈπΈ 2 STEP 3: Group like terms and write both sides of the equation in descending powers of π₯π₯. 0π₯π₯ 4 + 0π₯π₯ 3 + 0π₯π₯ 2 + 0π₯π₯1 +2π₯π₯ 0 = π₯π₯ 4 (π΄π΄ + πΆπΆ + π·π·) + π₯π₯ 3 (βπ΄π΄ + π΅π΅ β π·π· + πΈπΈ) + π₯π₯ 2 (π΄π΄ β π΅π΅ + πΆπΆ β πΈπΈ) + π₯π₯(βπ΄π΄ + π΅π΅) β π΅π΅ STEP 4: Equate the coefficients of like powers and solve the resulting system of equations. 4 (4) π₯π₯ : 0 = π΄π΄ + πΆπΆ + π·π· (3) π₯π₯ 3 : 0 = βπ΄π΄ + π΅π΅ β π·π· + πΈπΈ (2) π₯π₯ 2 : 0 = π΄π΄ β π΅π΅ + πΆπΆ β πΈπΈ (1) π₯π₯1 : 0 = βπ΄π΄ + π΅π΅ (0) π₯π₯ 0 : 2 = βπ΅π΅ (0) 2 = βπ΅π΅ (1) 0 = βπ΄π΄ + (β2) β π©π© = βππ β π¨π¨ = βππ (3) 0 = β(β2) + (β2) β π·π· + πΈπΈ (2) 0 = (β2) β (β2) + πΆπΆ β πΈπΈ (5) 0 = πΆπΆ βD (4) 0 = (β2) + πΆπΆ + π·π· (5) 0 = πΆπΆ β π·π· (6) 0 = 2 + 2πΆπΆ (2) 0 = β2 + 2 + 1 β πΈπΈ (3) 0 = 2 β 2 β π·π· + 1 STEP 5: Substitute the values found for the unknown constants back into the decomposition. π₯π₯ 2 (π₯π₯ 2 2 2 1 π₯π₯ + 1 =β β 2+ + 2 2 β 1)(π₯π₯ + 1) π₯π₯ π₯π₯ π₯π₯ β 1 π₯π₯ + 1 More handouts like this are available at: www.uvu.edu/mathlab/mathresources/ β πͺπͺ = ππ β π¬π¬ = ππ β π«π« = ππ Partial Fraction Decomposition UVU Math Lab Using the Zero-Out Method: (The Short Cut!) Find the partial fraction decomposition for the following rational expression: 2 π₯π₯ 5 +π₯π₯ 3 βπ₯π₯ 4 βπ₯π₯ 2 STEP 1: Factor the denominator and set expression equal to the form of partial fraction decomposition with the unknown constants (A, B, C,β¦) in the numerators of the decomposition. 2 ππππ (ππβππ)(ππππ +ππ) π΄π΄ π΅π΅ πΆπΆ = π₯π₯ + π₯π₯ 2 + π₯π₯β1 + π·π·π·π·+πΈπΈ π₯π₯ 2 +1 STEP 2: Multiply both sides by the LCD to eliminate denominators. π₯π₯ 2 (π₯π₯ β 1)(π₯π₯ 2 + 1) β 2 π΄π΄ π΅π΅ πΆπΆ π·π·π·π· + πΈπΈ 2 = β π₯π₯ 2 (π₯π₯ β 1)(π₯π₯ 2 + 1) + 2 β π₯π₯ 2 (π₯π₯ β 1)(π₯π₯ 2 + 1) + β π₯π₯ 2 (π₯π₯ β 1)(π₯π₯ 2 + 1) + 2 β π₯π₯ (π₯π₯ β 1)(π₯π₯ 2 + 1) π₯π₯ 2 (π₯π₯ β 1)(π₯π₯ 2 + 1) π₯π₯ π₯π₯ π₯π₯ β 1 π₯π₯ + 1 2 = π΄π΄π΄π΄(π₯π₯ β 1)(π₯π₯ 2 + 1) + π΅π΅(π₯π₯ β 1)(π₯π₯ 2 + 1) + πΆπΆπ₯π₯ 2 (π₯π₯ 2 + 1) + (π·π·π·π· + πΈπΈ)π₯π₯ 2 (π₯π₯ β 1) STEP 3: Choose a value for π₯π₯ that will result in zero factors and solve for the remaining letter. Let π₯π₯ = 0: 2 = 0 + π΅π΅(β1)(1) + 0 + 0 2 = βπ΅π΅ π©π© = βππ Let π₯π₯ = 1: 2 = 0 + 0 + πΆπΆ(1)(2) + 0 2 = 2πΆπΆ πΆπΆ = ππ (4) π₯π₯ 4 : β 1 = π΄π΄ + π·π· (3) π₯π₯ 3 : 2 = βπ΄π΄ β π·π· + πΈπΈ (2) π₯π₯ 2 : β 3 = π΄π΄ β πΈπΈ (1) π₯π₯1 : 2 = βπ΄π΄ (1) π¨π¨ = βππ (2) β3 = β2 β πΈπΈ (4) β1 = β2 + π·π· STEP 4: Substitute solved values into equation and then begin with STEP 3 on opposite side to solve any remaining values using systems of equations. 2 = π΄π΄π΄π΄(π₯π₯ β 1)(π₯π₯ 2 + 1) β 2(π₯π₯ β 1)(π₯π₯ 2 + 1) + 1π₯π₯ 2 (π₯π₯ 2 + 1) + (π·π·π·π· + πΈπΈ)π₯π₯ 2 (π₯π₯ β 1) 2 = π΄π΄π₯π₯ 4 +π΄π΄π΄π΄ 2 βπ΄π΄π΄π΄ 3 β π΄π΄π΄π΄β2π₯π₯ 3 β 2π₯π₯+2π₯π₯ 2 + 2+1π₯π₯ 4 +1π₯π₯ 2 +π·π·π·π· 4 βπ·π·π·π· 3 +πΈπΈπΈπΈ 3 βπΈπΈπΈπΈ 2 2 = π₯π₯ 4 (π΄π΄ + 1 + π·π·) + π₯π₯ 3 (βπ΄π΄ β 2 β π·π· + πΈπΈ) + π₯π₯ 2 (π΄π΄ + 2 + 1 β πΈπΈ) + π₯π₯(βπ΄π΄ β 2) + 2 β π¬π¬ = ππ β π«π« = ππ STEP 5: Substitute the values found for the unknown constants back into the decomposition. π₯π₯ 2 (π₯π₯ 2 2 2 1 π₯π₯ + 1 =β β 2+ + 2 2 β 1)(π₯π₯ + 1) π₯π₯ π₯π₯ π₯π₯ β 1 π₯π₯ + 1 More handouts like this are available at: www.uvu.edu/mathlab/mathresources/ Partial Fraction Decomposition UVU Math Lab The Four Types of Partial Fraction Decomposition: Previously, we learned that in order to find the sum of rational expressions we had to find a common denominator. 2 3 π₯π₯ + β π₯π₯ + 1 π₯π₯ β 1 π₯π₯ π₯π₯ π₯π₯(π₯π₯ β 1) 2 π₯π₯(π₯π₯ + 1) 3 (π₯π₯ + 1)(π₯π₯ β 1) = β + β β β π₯π₯ + 1 π₯π₯(π₯π₯ β 1) π₯π₯ β 1 π₯π₯(π₯π₯ + 1) π₯π₯ (π₯π₯ β 1)(π₯π₯ + 1) π₯π₯ 3 β2π₯π₯ 2 + 2π₯π₯ + 3 = π₯π₯(π₯π₯ 2 β 1) With partial fraction decomposition, we reverse that process and split the rational expression into partial fractions, expressions with irreducible denominators. ππ(π₯π₯) Given the rational expression ππ(π₯π₯), we factor the denominator, ππ(π₯π₯) and then set the expression equal to the partial fraction decomposition according to the following forms. Type I: The denominator is the product of distinct, non-repeating linear factors, such as (π₯π₯ β ππ): ππ(π₯π₯) π΄π΄ π΅π΅ πΆπΆ = + + +β― ππ(π₯π₯) π₯π₯ β ππ π₯π₯ β ππ π₯π₯ β ππ Type II: The denominator is the product of repeating linear factors, such as (π₯π₯ β ππ)ππ : πΆπΆ1 πΆπΆ2 πΆπΆππ ππ(π₯π₯) = + +β―+ 2 ππ(π₯π₯) π₯π₯ β ππ (π₯π₯ β ππ) (π₯π₯ β ππ)ππ Type III: The denominator is the product of distinct irreducible quadratic factors (cannot be factored further) of the form (ππππ 2 + ππππ + ππ): ππ(π₯π₯) π΄π΄π΄π΄ + π΅π΅ πΆπΆπΆπΆ + π·π· π·π·π·π· + πΈπΈ = + + 2 +β― ππ(π₯π₯) π₯π₯ 2 + ππ π₯π₯ 2 + ππ π₯π₯ + ππ Type IV: The denominator is the product of repeating irreducible quadratic factors, such as (πππ₯π₯ 2 + ππππ + ππ)ππ : ππ(π₯π₯) πΆπΆ1 π₯π₯ + πΆπΆ2 πΆπΆ3 π₯π₯+πΆπΆ4 πΆπΆππβ1 π₯π₯ + πΆπΆππ = 2 + 2 +β―+ 2 ππ(π₯π₯) π₯π₯ + ππ (π₯π₯ + ππ) (π₯π₯ 2 + ππ)ππ More handouts like this are available at: www.uvu.edu/mathlab/mathresources/
© Copyright 2026 Paperzz