Partial Fraction Decomposition

Partial Fraction Decomposition
UVU Math Lab
Using Systems of Equations:
Find the partial fraction decomposition for the following rational expression:
2
π‘₯π‘₯ 5 +π‘₯π‘₯ 3 βˆ’π‘₯π‘₯ 4 βˆ’π‘₯π‘₯ 2
STEP 1: Factor the denominator and set expression equal to the form of partial fraction decomposition
with the unknown constants (A, B, C,…) in the numerators of the decomposition.
2
π’™π’™πŸπŸ (π’™π’™βˆ’πŸπŸ)(π’™π’™πŸπŸ +𝟏𝟏)
𝐴𝐴
𝐡𝐡
𝐢𝐢
= π‘₯π‘₯ + π‘₯π‘₯ 2 + π‘₯π‘₯βˆ’1 +
𝐷𝐷𝐷𝐷+𝐸𝐸
π‘₯π‘₯ 2 +1
STEP 2: Multiply both sides by the LCD to eliminate denominators and multiply through.
π‘₯π‘₯ 2 (π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ 2 + 1) βˆ™
2
𝐴𝐴
𝐡𝐡
𝐢𝐢
𝐷𝐷𝐷𝐷 + 𝐸𝐸 2
= βˆ™ π‘₯π‘₯ 2 (π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ 2 + 1) + 2 βˆ™ π‘₯π‘₯ 2 (π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ 2 + 1) +
βˆ™ π‘₯π‘₯ 2 (π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ 2 + 1) + 2
βˆ™ π‘₯π‘₯ (π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ 2 + 1)
π‘₯π‘₯ 2 (π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ 2 + 1) π‘₯π‘₯
π‘₯π‘₯
π‘₯π‘₯ βˆ’ 1
π‘₯π‘₯ + 1
2 = 𝐴𝐴𝐴𝐴(π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ 2 + 1) + 𝐡𝐡(π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ 2 + 1) + 𝐢𝐢π‘₯π‘₯ 2 (π‘₯π‘₯ 2 + 1) + (𝐷𝐷𝐷𝐷 + 𝐸𝐸)π‘₯π‘₯ 2 (π‘₯π‘₯ βˆ’ 1)
2 = 𝐴𝐴π‘₯π‘₯ 4 +𝐴𝐴𝐴𝐴 2 βˆ’π΄π΄π΄π΄ 3 βˆ’ 𝐴𝐴𝐴𝐴+𝐡𝐡𝐡𝐡 3 + π΅π΅π΅π΅βˆ’π΅π΅π΅π΅ 2 βˆ’ 𝐡𝐡+𝐢𝐢𝐢𝐢 4 +𝐢𝐢𝐢𝐢 2 +𝐷𝐷𝐷𝐷 4 βˆ’π·π·π·π· 3 +𝐸𝐸π‘₯π‘₯ 3 βˆ’πΈπΈπΈπΈ 2
STEP 3: Group like terms and write both sides of the equation in descending powers of π‘₯π‘₯.
0π‘₯π‘₯ 4 + 0π‘₯π‘₯ 3 + 0π‘₯π‘₯ 2 + 0π‘₯π‘₯1 +2π‘₯π‘₯ 0
= π‘₯π‘₯ 4 (𝐴𝐴 + 𝐢𝐢 + 𝐷𝐷) + π‘₯π‘₯ 3 (βˆ’π΄π΄ + 𝐡𝐡 βˆ’ 𝐷𝐷 + 𝐸𝐸) + π‘₯π‘₯ 2 (𝐴𝐴 βˆ’ 𝐡𝐡 + 𝐢𝐢 βˆ’ 𝐸𝐸) + π‘₯π‘₯(βˆ’π΄π΄ + 𝐡𝐡) βˆ’ 𝐡𝐡
STEP 4: Equate the coefficients of like powers and solve the resulting system of equations.
4
(4) π‘₯π‘₯ : 0 = 𝐴𝐴 + 𝐢𝐢 + 𝐷𝐷
(3) π‘₯π‘₯ 3 : 0 = βˆ’π΄π΄ + 𝐡𝐡 βˆ’ 𝐷𝐷 + 𝐸𝐸
(2) π‘₯π‘₯ 2 : 0 = 𝐴𝐴 βˆ’ 𝐡𝐡 + 𝐢𝐢 βˆ’ 𝐸𝐸
(1) π‘₯π‘₯1 : 0 = βˆ’π΄π΄ + 𝐡𝐡
(0) π‘₯π‘₯ 0 : 2 = βˆ’π΅π΅
(0) 2 = βˆ’π΅π΅
(1) 0 = βˆ’π΄π΄ + (βˆ’2)
β†’ 𝑩𝑩 = βˆ’πŸπŸ
β†’ 𝑨𝑨 = βˆ’πŸπŸ
(3) 0 = βˆ’(βˆ’2) + (βˆ’2) βˆ’ 𝐷𝐷 + 𝐸𝐸
(2) 0 = (βˆ’2) βˆ’ (βˆ’2) + 𝐢𝐢 βˆ’ 𝐸𝐸
(5) 0 = 𝐢𝐢 βˆ’D
(4) 0 = (βˆ’2) + 𝐢𝐢 + 𝐷𝐷
(5) 0 =
𝐢𝐢 βˆ’ 𝐷𝐷
(6) 0 = 2 + 2𝐢𝐢
(2) 0 = βˆ’2 + 2 + 1 βˆ’ 𝐸𝐸
(3) 0 = 2 βˆ’ 2 βˆ’ 𝐷𝐷 + 1
STEP 5: Substitute the values found for the unknown constants back into the decomposition.
π‘₯π‘₯ 2 (π‘₯π‘₯
2
2 2
1
π‘₯π‘₯ + 1
=βˆ’ βˆ’ 2+
+ 2
2
βˆ’ 1)(π‘₯π‘₯ + 1)
π‘₯π‘₯ π‘₯π‘₯
π‘₯π‘₯ βˆ’ 1 π‘₯π‘₯ + 1
More handouts like this are available at: www.uvu.edu/mathlab/mathresources/
β†’ π‘ͺπ‘ͺ = 𝟏𝟏
β†’ 𝑬𝑬 = 𝟏𝟏
β†’ 𝑫𝑫 = 𝟏𝟏
Partial Fraction Decomposition
UVU Math Lab
Using the Zero-Out Method:
(The Short Cut!)
Find the partial fraction decomposition for the following rational expression:
2
π‘₯π‘₯ 5 +π‘₯π‘₯ 3 βˆ’π‘₯π‘₯ 4 βˆ’π‘₯π‘₯ 2
STEP 1: Factor the denominator and set expression equal to the form of partial fraction decomposition
with the unknown constants (A, B, C,…) in the numerators of the decomposition.
2
π’™π’™πŸπŸ (π’™π’™βˆ’πŸπŸ)(π’™π’™πŸπŸ +𝟏𝟏)
𝐴𝐴
𝐡𝐡
𝐢𝐢
= π‘₯π‘₯ + π‘₯π‘₯ 2 + π‘₯π‘₯βˆ’1 +
𝐷𝐷𝐷𝐷+𝐸𝐸
π‘₯π‘₯ 2 +1
STEP 2: Multiply both sides by the LCD to eliminate denominators.
π‘₯π‘₯ 2 (π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ 2 + 1) βˆ™
2
𝐴𝐴
𝐡𝐡
𝐢𝐢
𝐷𝐷𝐷𝐷 + 𝐸𝐸 2
= βˆ™ π‘₯π‘₯ 2 (π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ 2 + 1) + 2 βˆ™ π‘₯π‘₯ 2 (π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ 2 + 1) +
βˆ™ π‘₯π‘₯ 2 (π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ 2 + 1) + 2
βˆ™ π‘₯π‘₯ (π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ 2 + 1)
π‘₯π‘₯ 2 (π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ 2 + 1) π‘₯π‘₯
π‘₯π‘₯
π‘₯π‘₯ βˆ’ 1
π‘₯π‘₯ + 1
2 = 𝐴𝐴𝐴𝐴(π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ 2 + 1) + 𝐡𝐡(π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ 2 + 1) + 𝐢𝐢π‘₯π‘₯ 2 (π‘₯π‘₯ 2 + 1) + (𝐷𝐷𝐷𝐷 + 𝐸𝐸)π‘₯π‘₯ 2 (π‘₯π‘₯ βˆ’ 1)
STEP 3: Choose a value for π‘₯π‘₯ that will result in zero factors and solve for the remaining letter.
Let π‘₯π‘₯ = 0:
2 = 0 + 𝐡𝐡(βˆ’1)(1) + 0 + 0
2 = βˆ’π΅π΅
𝑩𝑩 = βˆ’πŸπŸ
Let π‘₯π‘₯ = 1:
2 = 0 + 0 + 𝐢𝐢(1)(2) + 0
2 = 2𝐢𝐢
𝐢𝐢 = 𝟏𝟏
(4) π‘₯π‘₯ 4 : βˆ’ 1 = 𝐴𝐴 + 𝐷𝐷
(3) π‘₯π‘₯ 3 : 2 = βˆ’π΄π΄ βˆ’ 𝐷𝐷 + 𝐸𝐸
(2) π‘₯π‘₯ 2 : βˆ’ 3 = 𝐴𝐴 βˆ’ 𝐸𝐸
(1) π‘₯π‘₯1 : 2 = βˆ’π΄π΄
(1) 𝑨𝑨 = βˆ’πŸπŸ
(2) βˆ’3 = βˆ’2 βˆ’ 𝐸𝐸
(4) βˆ’1 = βˆ’2 + 𝐷𝐷
STEP 4: Substitute solved values into equation and then begin with STEP 3 on opposite side to solve any
remaining values using systems of equations.
2 = 𝐴𝐴𝐴𝐴(π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ 2 + 1) βˆ’ 2(π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ 2 + 1) + 1π‘₯π‘₯ 2 (π‘₯π‘₯ 2 + 1) + (𝐷𝐷𝐷𝐷 + 𝐸𝐸)π‘₯π‘₯ 2 (π‘₯π‘₯ βˆ’ 1)
2 = 𝐴𝐴π‘₯π‘₯ 4 +𝐴𝐴𝐴𝐴 2 βˆ’π΄π΄π΄π΄ 3 βˆ’ π΄π΄π΄π΄βˆ’2π‘₯π‘₯ 3 βˆ’ 2π‘₯π‘₯+2π‘₯π‘₯ 2 + 2+1π‘₯π‘₯ 4 +1π‘₯π‘₯ 2 +𝐷𝐷𝐷𝐷 4 βˆ’π·π·π·π· 3 +𝐸𝐸𝐸𝐸 3 βˆ’πΈπΈπΈπΈ 2
2 = π‘₯π‘₯ 4 (𝐴𝐴 + 1 + 𝐷𝐷) + π‘₯π‘₯ 3 (βˆ’π΄π΄ βˆ’ 2 βˆ’ 𝐷𝐷 + 𝐸𝐸) + π‘₯π‘₯ 2 (𝐴𝐴 + 2 + 1 βˆ’ 𝐸𝐸) + π‘₯π‘₯(βˆ’π΄π΄ βˆ’ 2) + 2
β†’ 𝑬𝑬 = 𝟏𝟏
β†’ 𝑫𝑫 = 𝟏𝟏
STEP 5: Substitute the values found for the unknown constants back into the decomposition.
π‘₯π‘₯ 2 (π‘₯π‘₯
2
2 2
1
π‘₯π‘₯ + 1
=βˆ’ βˆ’ 2+
+ 2
2
βˆ’ 1)(π‘₯π‘₯ + 1)
π‘₯π‘₯ π‘₯π‘₯
π‘₯π‘₯ βˆ’ 1 π‘₯π‘₯ + 1
More handouts like this are available at: www.uvu.edu/mathlab/mathresources/
Partial Fraction Decomposition
UVU Math Lab
The Four Types of Partial Fraction Decomposition:
Previously, we learned that in order to find the sum of rational expressions we had to find a common
denominator.
2
3
π‘₯π‘₯
+
βˆ’
π‘₯π‘₯ + 1 π‘₯π‘₯ βˆ’ 1 π‘₯π‘₯
π‘₯π‘₯
π‘₯π‘₯(π‘₯π‘₯ βˆ’ 1)
2
π‘₯π‘₯(π‘₯π‘₯ + 1) 3 (π‘₯π‘₯ + 1)(π‘₯π‘₯ βˆ’ 1)
=
βˆ™
+
βˆ™
βˆ’ βˆ™
π‘₯π‘₯ + 1 π‘₯π‘₯(π‘₯π‘₯ βˆ’ 1) π‘₯π‘₯ βˆ’ 1 π‘₯π‘₯(π‘₯π‘₯ + 1) π‘₯π‘₯ (π‘₯π‘₯ βˆ’ 1)(π‘₯π‘₯ + 1)
π‘₯π‘₯ 3 βˆ’2π‘₯π‘₯ 2 + 2π‘₯π‘₯ + 3
=
π‘₯π‘₯(π‘₯π‘₯ 2 βˆ’ 1)
With partial fraction decomposition, we reverse that process and split the rational expression into partial
fractions, expressions with irreducible denominators.
𝑃𝑃(π‘₯π‘₯)
Given the rational expression 𝑄𝑄(π‘₯π‘₯), we factor the denominator, 𝑄𝑄(π‘₯π‘₯) and then set the expression equal to the
partial fraction decomposition according to the following forms.
Type I:
The denominator is the product of distinct, non-repeating linear factors, such as (π‘₯π‘₯ βˆ’ π‘Žπ‘Ž):
𝑃𝑃(π‘₯π‘₯)
𝐴𝐴
𝐡𝐡
𝐢𝐢
=
+
+
+β‹―
𝑄𝑄(π‘₯π‘₯) π‘₯π‘₯ βˆ’ π‘Žπ‘Ž π‘₯π‘₯ βˆ’ 𝑏𝑏 π‘₯π‘₯ βˆ’ 𝑐𝑐
Type II:
The denominator is the product of repeating linear factors, such as (π‘₯π‘₯ βˆ’ π‘Žπ‘Ž)𝑛𝑛 :
𝐢𝐢1
𝐢𝐢2
𝐢𝐢𝑛𝑛
𝑃𝑃(π‘₯π‘₯)
=
+
+β‹―+
2
𝑄𝑄(π‘₯π‘₯) π‘₯π‘₯ βˆ’ π‘Žπ‘Ž (π‘₯π‘₯ βˆ’ π‘Žπ‘Ž)
(π‘₯π‘₯ βˆ’ π‘Žπ‘Ž)𝑛𝑛
Type III:
The denominator is the product of distinct irreducible quadratic factors (cannot be factored further) of the form
(π‘Žπ‘Žπ‘Žπ‘Ž 2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐):
𝑃𝑃(π‘₯π‘₯) 𝐴𝐴𝐴𝐴 + 𝐡𝐡 𝐢𝐢𝐢𝐢 + 𝐷𝐷 𝐷𝐷𝐷𝐷 + 𝐸𝐸
=
+
+ 2
+β‹―
𝑄𝑄(π‘₯π‘₯) π‘₯π‘₯ 2 + π‘Žπ‘Ž π‘₯π‘₯ 2 + 𝑏𝑏
π‘₯π‘₯ + 𝑐𝑐
Type IV:
The denominator is the product of repeating irreducible quadratic factors, such as (π‘Žπ‘Žπ‘₯π‘₯ 2 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐)𝑛𝑛 :
𝑃𝑃(π‘₯π‘₯) 𝐢𝐢1 π‘₯π‘₯ + 𝐢𝐢2
𝐢𝐢3 π‘₯π‘₯+𝐢𝐢4
πΆπΆπ‘šπ‘šβˆ’1 π‘₯π‘₯ + πΆπΆπ‘šπ‘š
= 2
+ 2
+β‹―+
2
𝑄𝑄(π‘₯π‘₯)
π‘₯π‘₯ + π‘Žπ‘Ž
(π‘₯π‘₯ + π‘Žπ‘Ž)
(π‘₯π‘₯ 2 + π‘Žπ‘Ž)𝑛𝑛
More handouts like this are available at: www.uvu.edu/mathlab/mathresources/