Algebra II Chapter 6 Review Rewrite each polynomial in standard form. Then identify the leading coefficient, degree, and number of terms. Name the polynomial by its degree. 3x5+4x2-5 Leading Coefficient: 3 Degree: 5 # of terms: 3 Name: Quintic 1. 4x2 + 3x5 - 5 3. 1 + 5x3 + x2 - 3x 5x3+x2-3x+1 Leading Coefficient: 5 Degree: 3 # of terms: 4 Name: Cubic 2. 7 + 13x 13x+7 Leading Coefficient: 13 Degree: 1 # of terms: 2 Name: Linear 4. 8x + 2x4 - 5x3 2x4-5x3+8x Leading Coefficient: 2 Degree: 4 # of terms: 3 Name: Quartic Add or subtract. Write your answer in standard form. 5. (3x2 + 1) + (4x2 + 3) 7x2+4 7. (11x2 + x3 + 7) + (5x3 + 4x2 - 2x) 6x3+15x2-2x+7 6. (9x3 - 6x2 ) - (2x3 + x2 + 2) 7x3-7x2-2 8. ( x5 - 4x4 + 1) - (-7x4 + 11) x5+3x4-10 Find each product. 9. 2y (4x2 + 7xy) 8x2y+14xy2 11. (x+3)(x-2)(x+4) x3+5x2-2x-24 10. (a + b) (3ab + b2) 3a2b+4ab2+b3 12. (2x - 3) ( x3 - x2 + 3x + 5) 2x4-5x3+9x2+x-15 13. 2x3y4 (2xy4)2 14. m2n4 (3xy2)-3 π 2 π4 27π₯ 3 π¦ 6 8x5y12 15. (2 16. ) 2 π¦ 4π₯ 3 4 (2 ) π¦10 4π₯ Expand each expression. 17. (x - 3)4 18. (x + 2y)3 x4-12x3+54x2-108x+81 x3+6x2y+12xy2+8y3 Divide. 19. (6y2 + 13y - 8) ÷ (2y - 1) 3y+8 20. (6x2+x-15) ÷ (2x - 3) 3x+5 21. (3x3 + 11x2 + 11x + 15) ÷ (x + 3) 3x2+2x+5 22. (8x3-13x2-7x+2) ÷ (x - 2) 8x2+3x-1 Use synthetic substitution to evaluate the polynomial for the given value. 23. P (x) = x3 + 2x2 - 5x + 6 for x = -1 24. P (x) = x4 + x2 + x - 6 for x = 2 16 12 Factor Completely 25. 3t3 - 21t2 - 12t 3t(t2-7t-4) 27. y3 + 7y2 + 2y + 14 (y2+2)(y+7) 29. a6 + 125 26. 16y2 - 49 (4y-7)(4y+7) 28. 6x3-9x2+2x-3 (3x2+1)(2x+3) 30. 8x3-27y3 (a2+5)(a4-5a2+25) (2x-3y)(4x2+6xy+9y2) Factor using the Factor Theorem 31. x3-10x2+13x+24 (x+1)(x-3)(x-8) 33. 3x3-7x2-2x+8 (x+1)(x-2)(3x-4) 32. x3-10x2+x+120 (x+3)(x-5)(x-8) 34. 6x3-19x2-21x+4 (x+1)(x-4)(6x-1)
© Copyright 2026 Paperzz