Xylo-Configured Oligonucleotides (XNAs, Xylo Nucleic Acids): Synthesis and Properties Nicolai E. Poopeikoa, Jesper Wengela, Britta M. Dahlb aNucleic Acid Centre, Department of Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark bDepartment of Chemistry, University of Copenhagen, Universitetparken 5, DK-2100, Denmark Introduction Synthesis of XNAs and Hybridization Studies Among modified oligonucleotides the ones with altered 3’,4’-(threo)-configuration of phosphodiester backbone have attracted only limited attention.1-4 In general, the monomers of the structure A – D (Figure 1) were included into oligonucleotides. The ones containing xylonucleosides of the structure A and D have shown interesting properties.1,4 Ribozymes containing of monomer of the structure C have been prepared, but no hybridization data for xylo-RNA has so far reported.3 Methylene-extended xylo-DNA (monomer B) has been synthesised and found to induce limited, but significant, destabilization when hybridized towards DNA complements.2 Here we report data on the synthesis and binding properties of various XNAs in which monomers of the structure A, C and E are incorporated. The reference DNA oligos ON1 and ON7 and XNAs ON2-ON6 and ON8-ON13 (Table 2A) were synthesised using standard phophoramidate approach.11 The coupling yields for DNA phosphoramidate were > 99%, for xylo-configured amidates 5, 12 and 21 - > 90 %. Deprotection, purification and isolation of XNAs followed standard procedures. Hybridization data are shown in Table 2B. O O Base O O Base O O O O P O - - - O P O OH Base O O O O P O B A Base O O O O O - O P O - O P O F Figure 1 Figure 1. Structures of different monomeric constituents of XNAs (xylo nucleic acids) Synthesis Scheme 1 HO Thy O RO Thy O i DMTrO Thy O iii DMTrO 1 ii O P N 4 2 R=DMTr, R 1=H 3 R=DMTr, R 1=M s Thy O iv OH R 1O HO CN O 5 Reagents and conditions: i) DMTrCl, Py, RT, 20h; ii) MsCl, Py, RT, 20h, Σ 87.8%; iii) 1M NaOH, EtOH, 60oC, 20h, 88.9%; iv) chloro(β-cyanoethoxy)(N,N-diisopropylamino)phosphine, (i-Pr)2NEt, CH2Cl2, RT, 30 min, 93%. Scheme 2 B zO R e f. 6 D -xylose OMe O B zO i O Bz O OAc OBz RO Thy O OR D M T rO F D M T rO Thy O vi 11 9a R = B z, α−a n om er (2 3.5 % ) 9b R = B z, β-a no m e r (49 .3 % ) 1 0a R = H , α−a no m e r (7 4.8 % ) 1 0b R = H , β-an o m e r (83 .3 % ) iii Thy O OH O F P N F O 12 No report exists on the hybridization of XNAs towards RNA complements. From the data shown in Table 2B is appear that XNAs is a class of molecules able to efficiently bind to complementary RNA, in some cases with increased Tm values to reference duplexes. Especially XNAs with large portion of XNA monomers (ON10, ON11 and ON12) display high-affinity recognition of RNA, but also a few XNA modification in an oligo otherwise containing, e.g., DNA monomers (A), allow satisfactory binding properties towards RNA (see ON2 and ON3). These results suggest XNA to be interesting for applications within, e.g., molecular diagnostics and antisense therapy. CN iii Reagents and conditions: i) AcOH-Ac2O (3.8:1 v/v), conc. H2SO4, 75 min, 97%; ii) (TMSO)2Thy, TMSTf, 1,2-DCE, reflux, 3h; iii) NH3, MeOH, 20h; v) DMTrCl, Py, RT, 20h, 90%; vi) chloro(β-cyanoethoxy)(N,N-diisopropylamino)phosphine, (i-Pr)2NEt, CH2Cl2, RT, 30 min, 81%. Conclusions A viable synthetic routes for the XNA monomers containing at 2’-position proton, F-atom or acethoxy-group have been developed. It was shown that XNAs have high affinity to RNA complements than to DNA ones. Table 1. Selected 1H- and 13C-NMR data for nucleosides 10a and 10b.a Compound H-1’, ppm J1’,2’, Hz J1’,F, Hz H-4’, ppm 10a 6.24dd 3.3 21.43 4.67-4.64 m (+ H-3’) 10b 6.02d <1.0 a) The spectra are recorded in CD3OD. 21.43 4.23m C-6 138.33 d (JC-6,F=2.86) Acnowledgements 138.52 s The Danish Natural Science Research Council, The Danish Technical Research Council are acknowleged for financial support. Michael Meldgaard (Exiqon A/S) is thanked for MALDI-MS analysis. Scheme 3 HO BzO O i, ii OH 13 R2O O O iii OAc OBz O 14 OAc O Thy viii O vii 17 R1=H 18 R1=Ac HO OR1 O Thy OH 19 OAc Thy O vi OR2 OR1 v O Table 2B – Hybridization studies _________________________________________________________ Complementary DNA Complementary RNA [5’-d(CACTATACG)] [5’-r(CACUAUACG)] _________________________________________________________ XNA/DNA Tm (∆Tm) / oC) Tm (∆Tm) / oC ON1 30 26 ON2 24 (-6) 25 (-1) ON3 25 (-5) 27 (+1) ON4 b) c) _________________________________________________________ Complementary DNA Complementary RNA [r(A14)] [d(A14)] Tm (∆Tm) / oC) Tm (∆Tm) / oC) _________________________________________________________ ON7 33 29 ON8 23 (-10) 25 (-4) ON9 23.0 (-10) 25 (-4) ON10 34 (+0.1) 38 (+0.7) ON11 33 (0) 38 (+0.7) ON12 36 (+0.2) 36 (+0.1) ON13 21 (-12) 24 (-5) _________________________________________________________ dxT = thymin-1-yl deoxyxylo-DNA monomer A, FxT = thymin-1-yl 2’-fluoro-xylo-DNA monomer E, xT = thymin-1-yl xylo-RNA monomer C; The reported strongly destabilizing effect of incorporation of a few isolated xylo-DNA monomers A with the regard to hybridization towards DNA complements is confirmed by present study for ON2 and ON4 (relative to ON1) and ON8 (relative to ON7) (Table “B). Likewise, incorporation of one or three 2’fluoro-xylo-DNA- (E) or xylo-RNA (C) monomers into 9-mer sequence or into 14-mer sequence led to decreased affinity towards DNA (ON3, and ON9, ON13, respectively). However, a tendency towards reducing the degree in Tm value per modification (∆ Tm) is seen and stressed by comparable Tm values of almost fully modified XNAs (ON10, ON11 and ON12) and the reference ON7. F 8 v ON7: T14 ON8: 5’-T7dxTT6 ON9: 5’-T7FxTT6 ON10: 5’-(dxT)2FxT(dxT)3FxT(dxT)3FxT(dxT)2T ON 11: 5’-(dxT)13T ON 12: 5’-(FxT)13T ON13: 5’-T7xTT6 ii 6 7 F ON1: 5’-d(GTGATATGC) ON2: 5’-d(GTGAdxTATGC) ON3: 5’-d(GTGAFxTATGC) ON4: 5’-d(GdxTGAdxTAdxTGC) E D C Base O Table 2A - List of studied XNAs and reference DNAs x DMTrO 15 R1=Ac, R2=Bz 16 R1=R2=H O Thy xi OH OAc 20 References DMTrO O Thy O N P O OAc CN 21 Reagents and conditions: i) BzCl, Py, RT, 20h; ii) AcOH-Ac2O (3.8:1 v/v), conc. H2SO4, RT, 5h, Σ 95%; iii) ) (TMSO)2Thy, TMSTf, 1,2-DCE, reflux, 3h, 67.5%; v) NH3, MeOH, 20h, 66%; vi) (CH3)2CO, 2-methoxypropene, p-TsOH, RT, 3h, 99%; vii) Ac2O, Py, RT, 20h, 96.6%; viii) 80% AcOH, 65oC, 2h, then 20h at RT, 83.5%; x) DMTrCl, Py, RT, 20h, 90%; xi) chloro(β-cyanoethoxy)(N,N-diisopropylamino)phosphine, (i-Pr)2NEt, CH2Cl2, RT, 30 min, 87%. 1. Muhlegger, K.; Von Der Eltz, H.; Seela, F.; Rosemeyer, H. US 6,329,346 B1. 2. Svendsen, M. L.; Wengel, J.; Dahl, O.; Kirpekar, F.; Roepstorff, P. Tetrahedron, 1993, 49, 11341. 3. Matulic-Adamic, J.; Beigelman, L. US 6,316,612 B1. 4. Rajwanshi, V. K.; Håkansson, A. E.; Kofoed-Hansen, M.; Wengel, J. J. Chem. Soc., Perkin Trans.1 1999, 1407. 5. Kong, J. P.; Kim, S. K.; Moon, B. J.; Kim, S. J.; Kim, H. B. Nucleosides Nucleotides 2001, 20, 1751. 6. Wright, J. A.; Wilson, D. P.; Fox, J. J. J. Med. Chem. 1970, 13, 269. 7. Gosselin, G.; Imbach, J.-L. J. Heterocycl. Chem. 1982, 19, 597. 8. Poopeiko, N. E.; Kvasyuk, E. I.; Mikhailopulo, I. A.; Lidaks, M. J. Synthesis 1985, 605. 9. Tolstikov, G. A.; Mustafin, A. G.; Gataulin R. R.; Spirikhin, L. V.; Sultanova, V. S.; Abdrakhmanov, I. B. Russ. Chem. Bl. 1993, 42, 1095. 10. Fox, J. J., Codington, J. F.; Yung, N. C.; Kaplan, L.; Zampen J. O. J. Amer. Chem. Soc. 1958, 80, 5155.
© Copyright 2026 Paperzz