Performance Testing of Lithium-ion Batteries of Various Chemistries for EV and PHEV Applications Andrew Burke University of California-Davis Institute of Transportation Studies 2009 ZEV Symposium Sacramento, California September 22, 2009 Outline of the presentation 1. 2. 3. 4. 5. 6. 7. Introduction Batteries tested Selected test data for lithium-ion cells Summaries of battery characteristics Determination of power capability Test data for fast charging of cells Summary and conclusions Energy storage requirements for various electric and hybrid passenger cars (Prius size vehicles) Type of hybrid driveline Electric vehicle EV Plug-in Charge sustaining Microhybrid System voltage V Useable energy storage Maximum pulse power at 90% efficiency kW Cycle life (number of cycles) 300-400 25-35 kWh 50-120 3000-4000 300-400 6-12 kWh 50-70 2500-3500 150-200 100-150 Wh 25-35 300K-500K 45 30-50 Wh 5-10 300K-500K Useable depth-ofdischarge deep 60-80% deep 60-80% Shallow 5-10% Shallow 5-10% Battery sizing and power density for plug-in hybrid vehicles for various all-electric range and electric motor power (mid-size passenger car) Electric Engine Battery Battery Range motor power kWh kWh** Battery Battery P/E miles kW kW *needed stored kg*** kW/kg 10 50 100 2.52 3.6 30 1.66 13.8 15 55 100 3.78 5.4 45 1.22 10.2 20 60 75 5.04 7.2 60 1.0 8.3 30 75 60 7.56 10.8 90 .83 6.9 40 100 50 10.1 14.4 120 .83 6.9 * Vehicle energy useage from the battery: 250 Wh/mi ** Useable state-of-charge for batteries: 70%, weights shown are for cells only *** battery energy density 120Wh/kg Emerging Battery Technologies Graphite/NiCo and Mn spinel Iron phosphate (positive) Lithium titanate oxide (negative) Cylindrical vs. prismatic cells Developers/batteries available for testing Battery developer Battery type Cells/modules tested Iron phosphate 2.1Ah cylindrical GAIA LiMnO2 Altairnano EIG Lithium titanate LiMnO2 Iron phosphate Valence Iron phosphate K2 Energy Solutions Kokam Iron phosphate LiMnO2 Interdel LiMnO2 Quallion Panasonic LiMnO2 LiMnO2 7.5Ah, 40Ah cells cylindrical 11 Ah, 50Ah, 3.8Ah cells 16V and 24V modules 18Ah, 74V module 11 and 15Ah, 74V module Prismatic 1.35 Ah cylindrical cells 12V module 3 Ah cylindrical cells 8 and 30Ah Prismatic Cells expected prismatic Cylindrical cells 1-3 Ah Cylindrical 2.5-3.0Ah A123 42 Ah EIG cells 7.5Ah GAIA Cells Altairnano cells Selected cylindrical Lithium cells K2 solut. Quallion Valence ThunderSky/China cell 99 Wh/kg at C/2 180 W/kg at 90% eff. R= .65 mOhm Lithium iron Phosphate 260 Ah PHET 12V module Iron Phosphate 12V, 33 Ah, 8.64 kg 28P,4S; 1.2 Ah cells 12V Module from Valence Iron Phosphate 12.8V, 40 Ah, 6.3 kg, 84 Wh/kg EIG 72V Modules NiCOMnO2 and Iron phosphate Modules include cooling fans and battery management hardware/software 24V Module of the Alairnano 50Ah cells (Lithium Titanate Oxide) Test procedures and approach Start with cells, then modules, then packs Constant current and then constant power Pulse tests at various SOC Testing with battery management/monitoring units Pulse power cycle (driving simulation) tests – CD, CS Life cycle tests Fast charging Kokam High Power Cells (graphite/NiCoMnO2) Constant current discharges Current (A) 15 30 60 100 150 4.1V to 3.2V Time (sec) Ah 7417 30.9 3611 30.1 1728 28.8 976 27.1 603 25.1 Charge at 31A to 4.2V and taper to 1.5A Constant power discharges 4.1V to 3.2V Power (W) Time (sec) 43 9806 82 4835 162 2355 242 1509 321 1097 402 854 482 674 Cell weight 787 g Wh 117.1 110.1 106.0 101.4 97.8 95.4 90.2 Wh/kg 148.8 139.8 137.7 128.9 124.3 121.2 114.6 nC .485 1.0 2.08 3.69 5.97 W/kg 55 104 206 308 408 511 612 Pulse test data for the 31Ah Kokam Cell Cell resistance based on pulse tests 5 sec pulses, V at 2 sec State-of-charge 80% Voc = 3.94 60% Voc = 3.75 40% Voc = 3.64 Current (A) 150A disch 200A disch 310A disch 50A charge 100A charge 150A charge Resistance (mOhm) 1.6 1.6 1.55 1.6 1.6 1.53 150A disch 200A disch 310A disch 50A charge 100A charge 150A charge 1.53 1.5 1.45 1.6 1.5 1.53 150A disch 200A disch 310A disch 50A charge 1.53 1.5 1.42 1.6 Test data for the 12V Valence module (iron phosphate) Constant current tests* Current A Time sec Ah C/n 20 7054 39.2 C/1.96 40 3525 39.2 C/.98 60 2379 39.6 C/.66 80 1782 39.6 C/.5 100 1441 40 C/.4 * module consists of 30-1.35 cells in parallel and 4 in series charged at 20A to 14.6V and tapered to 2A . discharged to a cut-off voltage of 10V Constant power tests Power W W/kg * 300 47 600 94 900 142 1200 189 * module weight 6.36 kg Time sec 6025 2949 1929 473 Wh 502 492 482 473 Pulse tests * Resistance mOhm Current A discharge charge 100 9.3 9.3 150 9.2 9.3 200 9.3 9.3 * 5 sec pulses, voltage read at 2 sec to calculate the resistance; SOC= 62% Wh/kg 79 77 76 74 Test results for the 100 Ah Tenergy cell from China Cell is rated at 100Ah, weighs 3.5 kg, and is the iron phosphate chemistry Constant current I(A) 25 50 100 150 Ah 106.1 103.1 100.9 100.0 Constant power W 182 352 W/kg 52 100 sec 6009 2967 Wh 304 290 Wh/kg 87 83 max T 29 41 Pulse tests I(A) 300 300 400 mohms 1.5 5 sec discharge pulse 1.4 5 sec charge pulse 1.5 5 sec discharge pulse Calculation of the peak pulse power 90% efficiency at SOC=50% P = .1x.90x (3.28)2 /R P = .1x.90x (10.76) /.0015 = 645 W, 184 W/kg (low power cell) delta T 5 15 Test data for the EIG graphite/ NiCoMnO2 cell Weight 4.2V-3.0V .45kg Power (W) W/kg Time (sec) Wh 50 111 4560 63.0 90 200 2486 62.1 120 267 1906 63.5 Current (A) 20 40 60 Time (sec) 3242 1602 1065 Ah 18 17.8 17.8 Crate 1.1 2.2 3.3 Resistance 3 sec pulses mOhm 100A 3.2 2.9 3.6 250A 3.12 3.12 3.3 (W/kg)90%eff. 1069 895 718 SOC 100% 50 % 20% Voc 4.11 3.67 3.52 Wh/kg 140.7 138.0 141 Pulse characteristics of the CO20Acell at 250A at various states-of-charge Voc 4.12 3.98 3.88 3.78 3.72 3.67 3.63 3.59 3.54/100A 3.48/100A DOD % 0 10 20 30 40 50 60 70 80 90 V2 sec 3.33 3.24 3.14 3.06 2.98 2.90 2.84 2.74 3.18 2.96 Effic. % 80.8 81.4 80.9 81.0 80.1 79.0 78.2 76.3 89.8 85.1 R mOhm 3.16 2.96 2.96 2.88 2.96 3.08 3.16 3.4 3.6 5.2 Power W 833 810 785 765 745 725 710 685 318 296 W/kg 1850 1800 1744 1700 1655 1611 1578 1522 706 658 Test data for the 15 Ah EIG iron phosphate cell Iron Phosphate FO 15A Power (W) 62 102 202 302 401 Weight .424kg W/kg 142 240 476 712 945 3.65-2.0V Time (sec) 2854 1694 803 519 374 Wh 49.5 48.0 45.1 43.5 41.7 Wh/kg 117 113 106 103 98 Current (A) Time (sec) Ah Crate Resistance mOhm 15 30 100 200 300 3776 1847 548 272 177 15.7 15.4 15.2 15.1 14.8 .95 1.95 6.6 13.2 20.3 2.5 Test data for the Altairnano 11Ah lithium titanate oxide cell Constant current test data (2.8-1.5V) I(A) 10 20 50 100 150 200 nC .8 1.7 4.5 9.2 15.3 --- Time (sec) 4244 2133 806 393 235 116 Resistance mOhm --2.2 2.1 --- Ah 11.8 11.9 11.2 10.9 9.8 6.4 Resistance based on 5 sec pulse tests Constant power test data (2.8-1.5V) Power W/kg W 30 88 50 147 70 206 100 294 150 441 170 500 260 764 340 1000 Mass: .34 kg Time sec 2904 1730 1243 853 521 457 255 103 nC 1.2 2.1 2.9 4.2 6.9 7.9 14 35.0 Wh 24.2 24.0 24.2 23.7 21.7 21.6 18.4 9.7 Wh/kg 71.2 70.7 71.0 69.7 63.8 63.5 54.2 28.6 Performance characteristics of lithium-ion batteries Battery Developer/ Cell type Kokam prismatic Saft Cylind. GAIA Cylind. A123 Cylind. Altairnano prismatic Altairnano prismatic Quallion Cylind. Quallion Cylind. EIG prismatic EIG prismatic Panasonic EV prismatic Electrode chemistry Voltage range Ah Resist. mOhm 140 W/kg 90% effic.* 1220 Wh/kg Wgt. (kg) .787 Density gm/cm3 2.4 Graphite/ NiCoMnO2 Graphite/ NiCoAl Graphite/ NiCoMnO2 Graphite/Iron Phosph. LiTiO/ NiMnO2 LiTiO/ NiMnO2 Graphite/ NiCo Graphite/ NiCo Graphite/ NiCoMnO2 Graphite/Iron Phosph. Ni Metal hydride 4.1-3.2 30 1.5 4.0-2.5 6.5 3.2 63 1225 .35 2.1 4.1-2.5 .48 3.6 12 96 78 90 2063 1.53 3.22 3.6-2.0 40 7 2.2 1393 .07 2.2 2.8-1.5 11 2.2 70 990 .34 1.83 2.8-1.5 3.8 1.15 35 2460 .26 1.91 4.2-2.7 1.8 60 144 577 .043 2.6 4.2-2.7 2.3 72 170 445 .047 2.8 4.2-3.0 18 3.1 140 1122 .45 ---- 3.652.0 7.2-5.4 15 2.5 113 1100 .42 --- 6.5 11.4 46 395 1.04 1.8 * power density at full charge P= Eff.*(1-Eff.) Voc2 /R Performance characteristics of various high power batteries Battery manufact. Electrode chemistry Voltage range Ah Saft Graphite/ NiCo Graphite/ NiCo Graphite/ Iron Phosph. Graphite/ Iron Phosph. LiTiO/ NiCo LiTiO/ NiCo Graphite/ NiCo Ni Metal hydride 4.0-2.5 GAIA A123 EIG Altairnano Altairnano Kokam Panasonic EV Resist. mOhm 63 W/kg 95% effic. 645 Wh/kg Wgt. (kg) .35 Density gm/cm3 2.1 6.5 3.2 4.1-2.5 40 .48 96 1086 1.53 3.22 3.6-2.0 2.2 12 90 733 .07 2.2 3.6-2.0 15 2.5 113 580 .42 --- 2.8-1.5 11 2.2 70 521 .34 1.83 2.8-1.5 3.8 1.15 35 1300 .26 1.91 4.1-3.2 31 1.5 140 644 .787 2.4 7.2-5.4 6.5 11.4 46 208 1.04 1.8 Characteristics of lithium-ion batteries using various chemistries Chemistry Anode/cathode Graphite/ NiCoMnO2 Graphite/ Mn spinel Graphite/ NiCoAlO2 Graphite/ iron phosphate Lithium titanate/ Mn spinel Cell voltage Max/nom. Ah/gm Anode/cathode Energy density Wh/kg Cycle life (deep) Thermal stability 4.2/3.6 .36/.18 100-170 2000-3000 4.0/3.6 .36/.11 100-120 1000 4.2/3.6 .36/.18 100-150 2000-3000 fairly stable fairly stable least stable 3.65/ 3.25 .36/.16 90-115 >3000 Stable >5000 most stable 2.8/2.4 .18/.11 60-75 Determination of the cell/battery power capability from the test data - a matter of data interpretation and not measurement Calculation the pulse power characteristics of batteries using the USABC and energy efficiency methods USABC method PABC = Vmin (Vnom.OC – Vmin)/R PABC = Vmax (Vmax - Vnom.OC )/R discharge charge VnomOC is the open-circuit voltage at a mid-range SOC Vmin is the minimum voltage at which the battery is to be operated in discharge Vmax is the maximum voltage at which the battery is to be operated in charge (regen) R is the effective pulse resistance of the battery Pulse efficiency method PEF = EF(1-EF) V 2nomOC / R both charge and discharge pulses Matched impedance power method PMI = Voc2 /R Differences in the maximum peak power predicted by the USABC and the EF methods discharge PEF /PABC = EF(1-EF)/ [(Vmim/VnomOC)(1-Vmin /VnomOC)] charge PEF /PABC = [(VnomOC/ Vmax,ch)2/ (1- VnomOC/ Vmax,ch)] EF(1-EF) Example: Iron Phosphate VnomOC = 3.2, Vmin = 2, Vmax = 4.0 Efficiency .95 .90 .85 .80 .75 .70 EF(1-EF) .0475 .09 .1275 .16 .1875 .21 Discharge PEF/ PABC .20 .38 .54 .68 .80 .90 charge PEF/ PABC .15 .29 .41 .51 .60 .67 Example: Nickel Cobalt VnomOC = 3.7, Vmin = 2.5, Vmax = 4.3 Efficiency .95 .90 .85 .80 .75 .70 EF(1-EF) .0475 .09 .1275 .16 .1875 .21 Discharge PEF/ PABC .22 .41 .58 .73 .86 .96 charge PEF/ PABC .25 .48 .68 .85 1.0 .1.0 Comparisons of the Power Capability of two battery chemistries using various methods Approach Pulse efficiency (%) 95 90 80 70 USABC Matched impedance Kokam 31 Ah NiCo W/kg* EIG 15Ah Iron Phosphate W/kg* 551 1044 1856 2513 458 866 1540 2021 2541 2264 2879 2415 R=1.5 mOhm R= 2.5 mOhm * power densities at 50% SOC Fast charging of iron phosphate and lithium titanate oxide cells Fast charge test data for lithium-ion chemistries EIG iron phosphate 15 Ah cell Charge Current (Amps) 15 30 45 60 75 90 120 No Taper 60 90 Time to Taper Charge to Total Cutoff Time Cutoff Charge Discharge (secs) (secs) (Amp-hrs) (Amp-hrs) (Amp-hrs) 3630 210 15.2 15.4 15.50 1770 210 14.7 15.4 15.45 1140 199 14.2 15.4 15.38 840 172 13.9 15.3 15.30 630 184 13.1 15.3 15.29 480 219 11.9 15.2 15.17 240 316 7.9 15.2 15.16 780.4 464.8 12.9 11.6 Temp Rise During Charge Initial Temp Temp Change (C) (C) 22.5 0 22.5 1.5 22.5 3 23.5 4.5 25.5 5.5 23 7 25 9 12.99 11.60 Altairnano titanate oxide 11 Ah cell Charge Current (Amps) 11 22 33 44 55 66 88 Time to Taper Cutoff Time (secs) (secs) 3920 81 1950 68.5 1300 57.7 970 59.2 760 74.8 620 83 440 103.1 11.9 11.9 11.9 11.8 11.6 11.3 10.7 Charge Discharge (Amp-hrs) (Amp-hrs) 12.0 12.00 12.0 12.00 12.0 12.00 12.0 12.01 12.0 11.97 12.0 11.97 12.0 11.97 Temp Rise During Charge Initial Temp Temp Change (C) (C) 22.5 0 22 0.5 22.5 1.5 23 2.5 21.5 4 22.5 4.5 24 6.5 Five cycle fast charge of the Altairnano 11 Ah cell Altairnano 11 Ah Fast Charge 5 cycles, 66 A 70 3 60 2.5 40 2 Voltage 30 1.5 20 10 1 Current 0 0 5000 10000 15000 20000 25000 30000 0.5 -10 -20 0 Time (secs) Voltage (volts) Current (amps) 50 Repeated fast charging cycles for the 11Ah lithium Titanate oxide cell 66 Amps charge to 2.8V Cycle 1 2 2 3 3 4 4 5 5 12A discharge to 1.5V no active cooling Time to Initial Highest Charge or Cutoff charge Discharge Temp Temp Discharge (secs) Amp-hrs Amp-hrs ( C ) (C) Chg 614.4 10.24 21.5 26 Dischg 11.19 24 22 Chg 614.7 10.25 21.5 26.5 Dischg 11.18 24 22 Chg 614.5 10.24 21.5 26 Dishcg 11.18 24 22 Chg 614.1 10.24 21.5 26 Dischg 11.17 23.5 22 Chg 614.1 10.24 21.5 26 Conclusions There are significant trade-offs in energy density, power density, cycle life, and thermal stability between the various lithium battery chemistries In terms of battery performance, there are data available to evaluate the trade-offs Knowledge of the battery resistance is key to assessing the power characteristics. W/kg claimed by the manufacturer is not a reliable assessment of power There continues to be uncertainty concerning the differences in cycle life, power (efficiency), useable energy fraction, and safety (thermal stability) of the various chemistries Fast charging of both titanate oxide and iron phosphate lithium chemistries appears to be feasible
© Copyright 2025 Paperzz