6.4 Factoring Special Forms Objectives: 1. Factor difference of squares 2. Factor perfect square trinomials 3. Factor sum and difference of two cubes When discussing products in the last chapter, we looked at: The product of the sum and difference of two terms: ( x + y )( x − y ) = _________________ We see that this product has the form: ________________________ Factoring the Difference of Two Squares This gives us a way to factor any expression that is the difference of two squares. x 2 − y 2 = ( x + y )( x − y ) To do this, it is necessary that you can notice perfect squares quickly: EXAMPLE: List the perfect squares of 1 through 15: 1, 4, ... We see that the formula to factor the difference of two squares requires us to notice what terms are being squared. 2 2 16a 2 − 81b 2 = ( 4a ) − ( 9b ) 121x 4 − 49 y 8 = (11x 2 ) − ( 7 y 4 ) 2 EXAMPLE: Write the following in the form: 2 ( __ ) − ( __ ) 2 2 a.) 225 x 2 − 4 y 2 b.) 196 x10 − 25 y16 1 To factor the difference of two squares: 16a 2 − 81b 2 = ( 4a ) − ( 9b ) 1.) Find the terms that are squared: 4a & 9b 2.) Take the sum of the two terms times the difference of the two terms 2 2 16a 2 − 81b 2 = ( 4a ) − ( 9b ) = ( 4a + 9b )( 4a − 9b ) 2 2 We can’t factor the sum of two squares. It is called a prime polynomial. EXAMPLE: Factor a.) 4 x 2 − 81 b.) 9 x 2 + 121 c.) 9m 2 − 64n 4 e.) 225 x 2 − 4 y 2 2 f.) 196 x10 − 25 y16 When factoring any expression, we must always factor out the __________________ first. EXAMPLE: Factor the following a.) 6 p 2 q 2 s 2 − 54r 2 s 2 b.) 81x 3 − 49 x c.) x 4 − 16 d.) 3a 3 − 12a + 3a 2b − 12b e.) ( 3 x − 1) − 49 2 3 f.) 48a 5 − 3ab 4 Factoring Perfect Square Trinomials: Notice the form that a perfect square trinomial takes on. 2 ( x + y ) = x 2 + 2 xy + y 2 ( x − y) 2 = x 2 − 2 xy + y 2 EXAMPLE: Factor a.) 4 x 2 − 20 xy + 25 y 2 b.) a 2 + 6ab + 9b 2 EXAMPLE: Find the value of k so that the polynomial is a perfect square trinomial 4 x 2 + 12 x + k Factoring The Sum or Difference of Two Cubes: We also have nice formulas for the sum and difference of two cubes: a 3 − b3 = ( a − b ) ( a 2 + ab + b 2 ) a 3 + b3 = ( a + b ) ( a 2 − ab + b 2 ) 4 To do this, it is necessary that you can notice perfect cubes quickly: EXAMPLE: List the perfect cubes of 1 through 7: 1, 8, ___, ____, 125, ___, ____ Factor 125 x 3 − 216 125 x3 − 216 = ( 5 x ) − ( 6 ) = ( a − b ) ( a 2 + ab + b 2 ) 3 3 ( = ( 5 x − 6 ) ( 5 x ) + ( 5 x )( 6 ) + ( 6 ) 2 = ( 5 x − 6 ) ( 25 x 2 + 30 x + 36 ) 2 ) EXAMPLE: Factor each of the following: a.) 125 x 3 + 8 b.) 64 y − y 4 c.) 8 x3 − 27 y 3 5
© Copyright 2026 Paperzz