GLA 151-14 - Concentration Units Worksheet Key

KEY
Activity 151 โ€“ 14
Units of Concentration
Directions: This Guided Learning Activity (GLA) focuses on chemical calculations related to solution
concentration. Part A gives the definitions of the most common concentration units: molarity, % mass
(m/m), and ppm. Part B uses these concentration units in mass and mole conversion problems. Part C
discusses solution dilution, and the application of C1V1 = C2V2 equation. The worksheet is accompanied
by instructional videos. See http://www.canyons.edu/Departments/CHEM/GLA/ for additional materials.
Part A โ€“ Basic Concentration Units
A solution is a homogenous mixture of two or more pure substances. A solvent is defined as the
substance present in greatest amount, while the solutes are present in smaller amounts. The concentration
of a solute is the amount of solute dissolve in the solution, and can be defined both qualitatively and
quantitatively. Qualitatively, a solution can be dilute, containing a small amount of solute, or
concentrated, containing a large amount of solute.
Three quantitative measures of solution concentration will be discussed here. They are:
๐‘ด๐‘ด๐‘ด๐‘ด๐‘ด๐‘ด๐‘ด๐‘ด (๐‘ด) =
% ๐’Ž๐’Ž๐’Ž๐’Ž =
๐’‘๐’‘๐’‘ =
๐’Ž๐’Ž๐’Ž๐’Ž๐’Ž ๐’”๐’”๐’”๐’”๐’”๐’”
๐’๐’๐’๐’๐’๐’ ๐’”๐’”๐’”๐’”๐’”๐’”๐’”๐’”
๐’Ž๐’Ž๐’Ž๐’Ž ๐’”๐’”๐’”๐’”๐’”๐’”
๐’™ ๐Ÿ๐Ÿ๐Ÿ%
๐’Ž๐’Ž๐’Ž๐’Ž ๐’”๐’”๐’”๐’”๐’”๐’”๐’”๐’”
๐’Ž๐’Ž๐’Ž๐’Ž ๐’”๐’”๐’”๐’”๐’”๐’”
๐’™ ๐Ÿ๐Ÿ๐Ÿ”
๐’Ž๐’Ž๐’Ž๐’Ž ๐’”๐’”๐’”๐’”๐’”๐’”๐’”๐’”
Mass Percent & Parts Per Million: Recall that the solution is made up of both solute and solvent. The
mass of the solution is therefore mass of the solute plus mass of the solvent. Both the mass percent (%
mass) and the parts per million (ppm) concentrations can be found directly from the masses of the solute
and solution. Generally, ppm is used only for very dilute solutions.
Chemistry Guided Learning Activities
Activity 151 โ€“ 14
College of the Canyons
Page 1 of 6
Example #1. Calculate the % mass and ppm concentrations for each of the following solutions.
a. 2.35 g sucrose (C12H22O11) in 90.0 g of water.
% ๐’”๐’”๐’”๐’”๐’”๐’”๐’” =
๐’Ž๐’Ž๐’Ž๐’Ž ๐’”๐’”๐’”๐’”๐’”๐’”๐’”
๐Ÿ. ๐Ÿ‘๐Ÿ‘ ๐’ˆ ๐’”๐’”๐’”๐’”๐’”๐’”๐’”
๐’™ ๐Ÿ๐Ÿ๐Ÿ% =
๐’™ ๐Ÿ๐Ÿ๐Ÿ% = ๐Ÿ. ๐Ÿ“๐Ÿ“%
(๐Ÿ. ๐Ÿ‘๐Ÿ‘ ๐’ˆ + ๐Ÿ—๐Ÿ—. ๐ŸŽ ๐’ˆ)๐’”๐’”๐’”๐’”๐’”๐’”๐’”๐’”
๐’Ž๐’Ž๐’Ž๐’Ž ๐’”๐’”๐’”๐’”๐’”๐’”๐’”๐’”
๐’‘๐’‘๐’‘ ๐’”๐’”๐’”๐’”๐’”๐’”๐’” =
๐’Ž๐’Ž๐’Ž๐’Ž ๐’”๐’”๐’”๐’”๐’”๐’”๐’”
๐Ÿ. ๐Ÿ‘๐Ÿ‘ ๐’ˆ ๐’”๐’”๐’”๐’”๐’”๐’”๐’”
๐’™ ๐Ÿ๐ŸŽ๐Ÿ” =
๐’™ ๐Ÿ๐ŸŽ๐Ÿ” = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐’‘๐’‘๐’‘
(๐Ÿ. ๐Ÿ‘๐Ÿ“ ๐’ˆ + ๐Ÿ—๐Ÿ—. ๐ŸŽ ๐’ˆ)๐’”๐’”๐’”๐’”๐’”๐’”๐’”๐’”
๐’Ž๐’Ž๐’Ž๐’Ž ๐’”๐’”๐’”๐’”๐’”๐’”๐’”๐’”
b. 2.35 mg sucrose in 2.00 kg of solution.
๐Ÿ ๐  ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ
๏ฟฝ
๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐ฆ๐ฆ
(๐Ÿ. ๐Ÿ‘๐Ÿ‘ ๐ฆ๐ฆ ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ) ๏ฟฝ
๐Ÿ. ๐ŸŽ๐ŸŽ ๐ฑ ๐Ÿ๐Ÿ
๐Ÿ‘๐ 
๐ฌ๐ฌ๐ฌโ€ฒ๐ง
% ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ =
= ๐Ÿ. ๐Ÿ‘๐Ÿ‘ ๐ฑ ๐Ÿ๐Ÿโˆ’๐Ÿ‘ ๐  ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ;
(๐Ÿ. ๐ŸŽ๐ŸŽ ๐ค๐ค ๐ฌ๐ฌ๐ฌโ€ฒ๐ง) ๏ฟฝ
๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐  ๐ฌ๐ฌ๐ฌโ€ฒ๐ง
๏ฟฝ
๐Ÿ ๐ค๐  ๐ฌ๐ฌ๐ฌโ€ฒ๐ง
=
๐Ÿ. ๐Ÿ‘๐Ÿ‘ ๐ฑ ๐Ÿ๐Ÿโˆ’๐Ÿ‘ ๐  ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ
๐ฑ ๐Ÿ๐Ÿ๐Ÿ% = ๐ŸŽ. ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ %
๐Ÿ. ๐ŸŽ๐ŸŽ ๐ฑ ๐Ÿ๐Ÿ๐Ÿ‘ ๐  ๐ฌ๐ฌ๐ฌโ€ฒ๐ง
๐Ÿ. ๐Ÿ‘๐Ÿ‘ ๐ฑ ๐Ÿ๐Ÿโˆ’๐Ÿ‘ ๐  ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ
๐ฑ ๐Ÿ๐Ÿ๐Ÿ” = ๐Ÿ. ๐Ÿ๐Ÿ ๐ฉ๐ฉ๐ฉ
๐ฉ๐ฉ๐ฉ ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ =
๐Ÿ. ๐ŸŽ๐ŸŽ ๐ฑ ๐Ÿ๐Ÿ๐Ÿ‘ ๐  ๐ฌ๐ฌ๐ฌโ€ฒ๐ง
Although we limit this GLA to discussing % mass and ppm on a mass basis, keep in mind that both mass
% and ppm can be defined on a mass solute/mass solution (m/m), mass solute/volume solution (m/v) or
volume solute/volume solution (v/v) basis.
Molar Concentrations: The molar concentration, or molarity, of a solution is used extensively in
stoichiometric calculations. The molarity calculation requires that the mass of solute be converted into
moles.
Example #2. Calculate molar concentration (M) of each of the following solutions.
a. 45.0 g of sodium chloride (NaCl) in 2.00 L of solution.
๐‘ด๐‘ด๐‘ด๐‘ด๐‘ด ๐‘ต๐‘ต๐‘ต๐‘ต = ๐Ÿ’๐Ÿ’. ๐ŸŽ ๐’ˆ ๐‘ต๐‘ต๐‘ต๐‘ต ๏ฟฝ
๐‘ด๐‘ด๐‘ด๐‘ด๐‘ด๐‘ด๐‘ด๐‘ด =
๐Ÿ ๐’Ž๐’Ž๐’Ž๐’Ž ๐‘ต๐‘ต๐‘ต๐‘ต
๏ฟฝ = ๐ŸŽ. ๐Ÿ•๐Ÿ•๐Ÿ• ๐’Ž๐’Ž๐’Ž๐’Ž ๐‘ต๐‘ต๐‘ต๐‘ต
๐Ÿ“๐Ÿ“. ๐Ÿ’๐Ÿ’ ๐’ˆ ๐‘ต๐‘ต๐‘ต๐‘ต
๐’Ž๐’Ž๐’Ž๐’Ž๐’Ž ๐‘ต๐‘ต๐‘ต๐‘ต
๐ŸŽ. ๐Ÿ•๐Ÿ•๐Ÿ• ๐’Ž๐’Ž๐’Ž๐’Ž ๐‘ต๐‘ต๐‘ต๐‘ต
= ๏ฟฝ
๏ฟฝ = ๐ŸŽ. ๐Ÿ‘๐Ÿ‘๐Ÿ‘ ๐‘ด
๐’๐’๐’๐’๐’๐’ ๐’”๐’”๐’”๐’”๐’”๐’”๐’”๐’”
๐Ÿ. ๐ŸŽ๐ŸŽ ๐‘ณ ๐’”๐’”๐’”๐’”๐’”๐’”๐’”๐’”
b. 62.8 g of urea (CH4N2O) in 250.0 mL of solution.
๐Ÿ ๐ฆ๐ฆ๐ฆ ๐‚๐‡๐Ÿ’ ๐๐Ÿ ๐Ž
(๐Ÿ”๐Ÿ”. ๐Ÿ– ๐  ๐‚๐‡๐Ÿ’ ๐๐Ÿ ๐Ž) ๏ฟฝ
๏ฟฝ = ๐Ÿ. ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ ๐ฆ๐ฆ๐ฆ ๐ฎ๐ฎ๐ฎ๐ฎ
๐Ÿ”๐Ÿ”. ๐ŸŽ๐ŸŽ ๐  ๐‚๐‡๐Ÿ’ ๐๐Ÿ ๐Ž
๐Œ๐Œ๐Œ๐Œ๐Œ๐Œ๐Œ๐Œ =
๐ฆ๐ฆ๐ฆ๐ฆ๐ฆ ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ
๐Ÿ. ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ ๐ฆ๐ฆ๐ฆ ๐‚๐‡๐Ÿ’ ๐๐Ÿ ๐Ž
=
= ๐Ÿ’. ๐Ÿ๐Ÿ ๐Œ
๐‹๐‹๐‹๐‹๐‹๐‹ ๐ฌ๐ฌ๐ฌโ€ฒ๐ง
๐ŸŽ. ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐‹
Chemistry Guided Learning Activities
Activity 151 โ€“ 14
College of the Canyons
Page 2 of 6
Part B โ€“ Calculations using Solution Concentration
Solution concentration directly relates to the amount of solute present, and many calculations in solution
chemistry relate the amount of solute to the volume of the solution. To solve these problems, itโ€™s
important to be familiar with the concentration definitions.
Practice:
How many moles of magnesium bromide (MgBr2) are found in 6.48 mL of a 0.135 M aqueous solution?
๐’Ž๐’Ž๐’Ž๐’Ž๐’Ž ๐‘ด๐‘ด๐‘ด๐’“๐Ÿ
We know:
๐‘ด๐‘ด๐‘ด๐‘ด๐‘ด๐‘ด๐‘ด๐‘ด =
๐’๐’๐’๐’๐’๐’ ๐’”๐’”๐’”๐’”๐’”๐’”๐’”๐’”
Plugging in for molarity and volume (๐Ÿ”. ๐Ÿ’๐Ÿ’ ๐’Ž๐’Ž ๏ฟฝ
๐ŸŽ. ๐Ÿ๐Ÿ๐Ÿ ๐‘ด =
Solving for x:
๐’™ = ๏ฟฝ๐ŸŽ. ๐Ÿ๐Ÿ๐Ÿ
๐Ÿ๐‘ณ
๏ฟฝ
๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐’Ž๐’Ž
๐’™
๐ŸŽ. ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ ๐‘ณ
= ๐ŸŽ. ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ ๐‘ณ):
๐’Ž๐’Ž๐’Ž
๏ฟฝ (๐ŸŽ. ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ ๐‘ณ) = ๐Ÿ–. ๐Ÿ•๐Ÿ• ๐’™ ๐Ÿ๐Ÿโˆ’๐Ÿ’ ๐’Ž๐’Ž๐’Ž ๐‘ด๐‘ด๐‘ด๐’“๐Ÿ
๐‘ณ
Alternatively, the concentration can be used as a conversion factor.
We know:
๐‘ด๐‘ด๐‘ด๐‘ด๐‘ด๐‘ด๐‘ด๐‘ด =
๐’Ž๐’Ž๐’Ž๐’Ž๐’Ž ๐‘ด๐‘ด๐‘ด๐’“๐Ÿ
๐’๐’๐’๐’๐’๐’ ๐’”๐’”๐’”๐’”๐’”๐’”๐’”๐’”
Solving by dimensional analysis:
๐Ÿ”. ๐Ÿ’๐Ÿ’ ๐’Ž๐’Ž ๐’”๐’”๐’”โ€ฒ๐’ ๏ฟฝ
=
๐ŸŽ.๐Ÿ๐Ÿ๐Ÿ ๐’Ž๐’Ž๐’Ž ๐‘ด๐‘ด๐‘ด๐’“๐Ÿ
๐Ÿ๐‘ณ
๐Ÿ ๐‘ณ ๐’”๐’”๐’”โ€ฒ๐’
๐ŸŽ. ๐Ÿ๐Ÿ๐Ÿ ๐’Ž๐’Ž๐’Ž ๐‘ด๐‘ด๐‘ด๐’“๐Ÿ
๏ฟฝ๏ฟฝ
๏ฟฝ = ๐Ÿ–. ๐Ÿ•๐Ÿ• ๐’™ ๐Ÿ๐Ÿโˆ’๐Ÿ’ ๐’Ž๐’Ž๐’Ž ๐‘ด๐‘ด๐‘ด๐’“๐Ÿ
๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐’Ž๐’Ž ๐’”๐’”๐’”โ€ฒ๐’
๐Ÿ ๐‘ณ ๐’”๐’”๐’”โ€ฒ๐’
Example #3. How much ammonium acetate (NH4NO3) is needed to prepare a 400.0 g solution with a
concentration of 7.50% NH4NO3?
๐Ÿ•. ๐Ÿ“๐Ÿ“ ๐  ๐๐‡๐Ÿ’ ๐๐Ž๐Ÿ‘
(๐Ÿ’๐Ÿ’๐Ÿ’. ๐ŸŽ ๐  ๐ฌ๐ฌ๐ฌโ€ฒ๐ง) ๏ฟฝ
๏ฟฝ = ๐Ÿ‘๐Ÿ‘. ๐ŸŽ ๐  ๐๐‡๐Ÿ’ ๐๐Ž๐Ÿ‘
๐Ÿ๐Ÿ๐Ÿ ๐  ๐ฌ๐ฌ๐ฌโ€ฒ๐ง
Chemistry Guided Learning Activities
Activity 151 โ€“ 14
College of the Canyons
Page 3 of 6
Part C โ€“ Solution Dilution Calculations
In laboratories, often new solutions are prepared from concentrated stock solutions by dilution. When
dilutions are performed, the following equation can be used to easily calculate the concentration or
volume of the stock or dilute solution.
๐‘ช๐Ÿ ๐‘ฝ๐Ÿ = ๐‘ช๐Ÿ ๐‘ฝ๐Ÿ
Where: C1 = concentration of stock solution
V1 = volume of stock solution
C2 = concentration of diluted solution
V2 = volume of diluted solution
Keep in mind that this equation is only used when a solution is diluted, and never to perform
stoichiometric calculations. Most solution calculations will not use this equation. The concentration can
be given in molarity, % mass, or ppm. Likewise, volume can be given in liters, milliliters, or another
convenient unit.
Practice:
What volume in mL of 4.00 M NaOH is needed to prepare 250. mL of dilute 0.200 M NaOH?
๐‘ช ๐Ÿ ๐‘ฝ๐Ÿ = ๐‘ช ๐Ÿ ๐‘ฝ๐Ÿ
Stock solution: C1 = 4.00 M NaOH, V1 = ??
Diluted solution: C2 = 0.200 M NaOH, V2 = 250. mL
๐‘ฝ๐Ÿ =
๐‘ช๐Ÿ ๐‘ฝ๐Ÿ (๐ŸŽ. ๐Ÿ๐Ÿ๐Ÿ ๐‘ด)(๐Ÿ๐Ÿ๐Ÿ. ๐’Ž๐’Ž)
=
= ๐Ÿ๐Ÿ. ๐Ÿ“ ๐’Ž๐’Ž
๐‘ช๐Ÿ
(๐Ÿ’. ๐ŸŽ๐ŸŽ ๐‘ด)
Example #4. 5.00 mL of a 0.500 M solution of lithium chloride is diluted to 25.00 mL. What is the final
concentration of the solution?
๐‚๐Ÿ =
(๐ŸŽ. ๐Ÿ“๐Ÿ“๐Ÿ“ ๐Œ ๐‹๐‹๐‹๐‹)(๐Ÿ“. ๐ŸŽ๐ŸŽ ๐ฆ๐ฆ)
๐‚๐Ÿ ๐•๐Ÿ
=
= ๐ŸŽ. ๐Ÿ๐Ÿ๐Ÿ ๐Œ ๐‹๐‹๐‹๐‹
(๐Ÿ๐Ÿ. ๐ŸŽ๐ŸŽ ๐ฆ๐ฆ)
๐•๐Ÿ
Chemistry Guided Learning Activities
Activity 151 โ€“ 14
College of the Canyons
Page 4 of 6
A serial dilution is a process in which each diluted solution is treated as the stock solution for the next
dilution. Serial dilutions are a simple way for scientists to prepare solutions with a wide range of
concentrations.
Example #5. Solution A is prepared by diluting 1.00 mL of 0.160 M CaCl2 to 50.0 mL. Solution B is
prepared by diluting 10.0 mL of Solution A to 500.0 mL. What is the concentration of CaCl2 in Solution
B?
The stock solution is solution 1 and solution A is solution 2.
๐‚๐€ =
(๐ŸŽ. ๐Ÿ๐Ÿ๐Ÿ ๐Œ)(๐Ÿ. ๐ŸŽ๐ŸŽ ๐ฆ๐ฆ)
๐‚๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ ๐•๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ
=
= ๐ŸŽ. ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ ๐Œ
(๐Ÿ“๐Ÿ“. ๐ŸŽ ๐ฆ๐ฆ)
๐•๐€
Solution B is prepared using solution A as the stock, so for this calculation, the stock concentration
is 0.0032 M.
๐‚๐ =
(๐ŸŽ. ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ ๐Œ)(๐Ÿ๐Ÿ. ๐ŸŽ ๐ฆ๐ฆ)
๐‚๐€ ๐•๐€
=
= ๐Ÿ”. ๐Ÿ’ ๐ฑ ๐Ÿ๐ŸŽโˆ’๐Ÿ“ ๐‘ด
(๐Ÿ“๐Ÿ“๐Ÿ“. ๐ŸŽ ๐ฆ๐ฆ)
๐•๐
Chemistry Guided Learning Activities
Activity 151 โ€“ 14
College of the Canyons
Page 5 of 6
Part D โ€“ Extra Practice
1. Calculate the grams of solute necessary to prepare 200.0 mL of the following solutions:
50.0% (m/m) sucrose (C12H22O11), d=1.230 g/mL
50.0 mM sodium hydrogen phosphate (Na2HPO4)
1.46 M calcium chloride (CaCl2)
0.36 M glucose (C6H12O6)
2. Find the mass % concentration of sugar in a 28.735 g solution containing 3.429 g of dissolved sugar.
3. How many kilograms of sucrose are in 4.8 kg of a 40.0 % (m/m) sucrose solution?
4. What is the molarity of a solution that contains 32.4 g of potassium bromide in 1.5 L of solution? What
is the mass % (dsolution = 1.02 g/mL)?
5. Which solution contains more moles of sodium ions: 100.0 mL of 0.620 M sodium chloride (NaCl), or
100.0 g of 6.3% (m/m) sodium carbonate (Na2CO3)? Hint: Recall that soluble ionic compounds dissociate
in water. Refer to GLA 151-7 Complete and Net Ionic Equations for more guidance.
6. Benzene is a known carcinogen that can leak into groundwater. The maximum allowable level of
benzene in drinking water is 5 ฮผg/L. The average American consumes 3.9 cups, or 0.92 liters, of water
each day. If benzene is present in an individualโ€™s drinking water at 5 ฮผg/L, how many grams of benzene
will that person consume in one year?
7. A technician wants to prepare a 175 mL of 0.84 M sodium hydroxide solution. What volume of the 5.0
M stock solution of sodium hydroxide does the technician need?
8. A 20.0 mL of a stock solution was diluted to 1.00 L. The concentration of the final solution was 40.0
mM. What was the concentration of the stock solution?
9. What mass of a 22.8 ppm lead (II) nitrate solution will contain 0.00020 mole of lead (II) nitrate?
10. Calculate the number of moles of nitric acid (HNO3) in 500. mL of a solution which is 30.0% HNO3
by mass. (dsolution = 1.18 g/mL).
Chemistry Guided Learning Activities
Activity 151 โ€“ 14
College of the Canyons
Page 6 of 6
Key for extra practice GLA 151-14
1. For this problem, you need to be familiar with the definition of each concentration unit, and be
able to manipulate units to get the correct units in the numerator and denominator of the
expression.
๐Ÿ.๐Ÿ๐Ÿ๐Ÿ ๐’ˆ ๐’”๐’”๐’”โ€ฒ๐’
๐Ÿ“๐Ÿ“.๐ŸŽ ๐’ˆ ๐’”๐’”๐’”๐’”๐’”๐’”๐’”
๏ฟฝ๏ฟฝ
๏ฟฝ
๐Ÿ ๐’Ž๐’Ž ๐’”๐’”๐’”โ€ฒ๐’
๐Ÿ๐Ÿ๐Ÿ ๐’ˆ ๐’”๐’”๐’”โ€ฒ๐’
50.0% (m/m) sucrose: (๐Ÿ๐Ÿ๐Ÿ. ๐ŸŽ ๐’Ž๐’Ž ๐’”๐’๐’โ€ฒ๐’) ๏ฟฝ
= ๐Ÿ๐Ÿ๐Ÿ ๐’ˆ ๐’”๐’”๐’”๐’”๐’”๐’”๐’”
For this conversion, recall that the metric prefixes can be applied to any metric unit, including
molarity. Therefore, a concentration of 1 M is equivalent to 1000 mM. We will represent 50 mM
๐Ÿ“๐Ÿ“.๐ŸŽ ๐’Ž๐’Ž๐’Ž๐’Ž ๐‘ต๐’‚๐Ÿ ๐‘ฏ๐‘ฏ๐‘ถ๐Ÿ’
Na2HPO4 as ๏ฟฝ
๏ฟฝ.
๐Ÿ ๐‘ณ ๐’”๐’”๐’”๐’”๐’”๐’”๐’”๐’”
50.0 mM Na2HPO4 :
(๐Ÿ๐Ÿ๐Ÿ. ๐ŸŽ ๐’Ž๐’Ž ๐’”๐’”๐’”โ€ฒ๐’) ๏ฟฝ
๐Ÿ. ๐Ÿ’๐Ÿ’ ๐’ˆ ๐‘ต๐’‚๐Ÿ ๐‘ฏ๐‘ฏ๐‘ถ๐Ÿ’
๐Ÿ ๐‘ณ ๐’”๐’”๐’”โ€ฒ๐’
๐Ÿ“๐Ÿ“.๐ŸŽ ๐’Ž๐’Ž๐’Ž๐’Ž ๐‘ต๐’‚๐Ÿ ๐‘ฏ๐‘ท๐‘ถ๐Ÿ’
๐Ÿ ๐’Ž๐’Ž๐’Ž
๐Ÿ๐Ÿ๐Ÿ.๐Ÿ—๐Ÿ— ๐’ˆ ๐‘ต๐’‚๐Ÿ ๐‘ฏ๐‘ท๐‘ถ๐Ÿ’
๏ฟฝ๏ฟฝ
๏ฟฝ๏ฟฝ
๏ฟฝ๏ฟฝ
๏ฟฝ
๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐’Ž๐’Ž ๐’”๐’”๐’”โ€ฒ๐’
๐Ÿ ๐‘ณ ๐’”๐’”๐’”โ€ฒ๐’
๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐’Ž๐’Ž๐’Ž๐’Ž
๐Ÿ ๐’Ž๐’Ž๐’Ž ๐‘ต๐’‚๐Ÿ ๐‘ฏ๐‘ฏ๐‘ถ๐Ÿ’
=
For molar concentrations, itโ€™s important to remember to convert to moles using molar mass. The
๐‘ฟ๐‘ฟ ๐’Ž๐’Ž๐’Ž ๐’”๐’”๐’”๐’”๐’”๐’”
๐‘ฟ๐‘ฟ ๐’Ž๐’Ž๐’Ž ๐’”๐’”๐’”๐’”๐’”๐’”
๏ฟฝ or as ๏ฟฝ
๏ฟฝ, since 1 L and 1000 mL are
molarity can be represented as ๏ฟฝ
๐Ÿ ๐‘ณ ๐’”๐’”๐’”๐’”๐’”๐’”๐’”๐’”
๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐’Ž๐’Ž ๐’”๐’”๐’”๐’”๐’”๐’”๐’”๐’”
equivalent volumes.
๐Ÿ.๐Ÿ’๐Ÿ’ ๐’Ž๐’Ž๐’Ž ๐‘ช๐‘ช๐‘ช๐’๐Ÿ
๐Ÿ๐Ÿ๐ŸŽ.๐Ÿ—๐Ÿ— ๐’ˆ ๐‘ช๐‘ช๐‘ช๐’๐Ÿ
๏ฟฝ๏ฟฝ
๏ฟฝ
๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐’Ž๐’Ž ๐’”๐’”๐’”โ€ฒ๐’
๐Ÿ ๐’Ž๐’Ž๐’Ž ๐‘ช๐‘ช๐‘ช๐’๐Ÿ
1.46 M calcium chloride: (๐Ÿ๐Ÿ๐Ÿ. ๐ŸŽ ๐’Ž๐’Ž ๐’”๐’”๐’”โ€ฒ๐’) ๏ฟฝ
๐ŸŽ.๐Ÿ‘๐Ÿ‘ ๐’Ž๐’Ž๐’Ž ๐‘ช๐Ÿ” ๐‘ฏ๐Ÿ๐Ÿ ๐‘ถ๐Ÿ”
๐Ÿ๐Ÿ๐Ÿ.๐Ÿ๐Ÿ ๐’ˆ ๐‘ช๐Ÿ” ๐‘ฏ๐Ÿ๐Ÿ ๐‘ถ๐Ÿ”
๏ฟฝ๏ฟฝ
๏ฟฝ
๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐’Ž๐’Ž ๐’”๐’”๐’”โ€ฒ๐’
๐Ÿ ๐’Ž๐’Ž๐’Ž ๐‘ช๐Ÿ” ๐‘ฏ๐Ÿ๐Ÿ ๐‘ถ๐Ÿ”
0.36 M glucose: (๐Ÿ๐Ÿ๐Ÿ. ๐ŸŽ ๐’Ž๐’Ž ๐’”๐’”๐’”โ€ฒ๐’) ๏ฟฝ
๐’Ž๐’Ž๐’Ž๐’Ž ๐’”๐’”๐’”๐’”๐’”
= ๐Ÿ‘๐Ÿ‘. ๐Ÿ’ ๐’ˆ ๐‘ช๐‘ช๐‘ช๐’๐Ÿ
= ๐Ÿ๐Ÿ. ๐ŸŽ ๐’ˆ ๐‘ช๐Ÿ” ๐‘ฏ๐Ÿ๐Ÿ ๐‘ถ๐Ÿ”
2. For this problem, we need to know % ๐’”๐’”๐’”๐’”๐’” =
๐’™ ๐Ÿ๐Ÿ๐Ÿ%. The problem gives both the
๐’Ž๐’Ž๐’Ž๐’Ž ๐’”๐’”๐’โ€ฒ ๐’
mass of the sucrose and the mass of the solution, so we simply plug the two values into the
expression. Sometimes, the mass of the solvent is given, and in these cases youโ€™ll need to add the
mass of the solute and the solvent together to find the mass of the solution.
% ๐’”๐’”๐’”๐’”๐’”๐’”๐’” =
๐Ÿ‘. ๐Ÿ’๐Ÿ’๐Ÿ’ ๐’ˆ ๐’”๐’”๐’”๐’”๐’”
๐’™ ๐Ÿ๐Ÿ๐Ÿ% = ๐Ÿ๐Ÿ. ๐Ÿ—๐Ÿ—%
๐Ÿ๐Ÿ. ๐Ÿ•๐Ÿ•๐Ÿ• ๐’ˆ ๐’”๐’”๐’โ€ฒ ๐’
3. One of the advantages of concentration units is that they can be used as conversion factors to
convert between quantities. In this problem, we recognize that mass percent can be written as a
conversion factor. 40.0% means 40.0% of any mass. Because it is a percent measurement, we can
use any mass unit we choose. Because the mass of solution is given in kg, we will choose to represent
the mass % in kg.
๐Ÿ’๐Ÿ’. ๐ŸŽ ๐’Œ๐’Œ ๐’”๐’”๐’”๐’”๐’”๐’”๐’”
(๐Ÿ’. ๐Ÿ– ๐’Œ๐’Œ ๐’”๐’”๐’”โ€ฒ๐’) ๏ฟฝ
๏ฟฝ = ๐Ÿ. ๐Ÿ— ๐’Œ๐’Œ ๐’”๐’”๐’”๐’”๐’”๐’”๐’”
๐Ÿ๐Ÿ๐Ÿ ๐’Œ๐’Œ ๐’”๐’”๐’โ€ฒ ๐’
4. To calculate the molarity, we need to divide the moles of solute by the liters of solution. It may be
convenient to divide the mass by the volume, and then use dimensional analysis to convert the mass
of solute to moles of solute.
๐‘ด๐‘ด๐‘ด๐‘ด๐‘ด๐‘ด๐‘ด๐‘ด =
๐’Ž๐’Ž๐’Ž๐’Ž๐’Ž ๐‘ฒ๐‘ฒ๐‘ฒ
๐Ÿ‘๐Ÿ‘. ๐Ÿ’ ๐’ˆ ๐‘ฒ๐‘ฒ๐‘ฒ
๐Ÿ ๐’Ž๐’Ž๐’Ž ๐‘ฒ๐‘ฒ๐‘ฒ
= ๏ฟฝ
๏ฟฝ๏ฟฝ
๏ฟฝ = ๐ŸŽ. ๐Ÿ๐Ÿ ๐‘ด ๐‘ฒ๐‘ฒ๐‘ฒ
โ€ฒ
โ€ฒ
๐‘ณ๐‘ณ๐‘ณ๐‘ณ๐‘ณ๐‘ณ ๐’”๐’”๐’ ๐’
๐Ÿ. ๐Ÿ“ ๐‘ณ ๐’”๐’”๐’ ๐’ ๐Ÿ๐Ÿ๐Ÿ. ๐ŸŽ ๐’ˆ ๐‘ฒ๐‘ฒ๐‘ฒ
For the mass percent, we need to remember that the % mass measurement is based on the masses
of the solute and solution. The volume of the solution can be converted to mass by using the density
๐’ˆ๐’ˆ๐’ˆ๐’ˆ๐’ˆ ๐’”๐’”๐’”๐’”๐’”๐’”๐’”๐’”
as a conversion factor. The density of a solution is most often measured in
. Take care
๐’Ž๐’Ž ๐’”๐’”๐’”๐’”๐’”๐’”๐’”๐’”
to distinguish between the mass of the solution and the mass of the solute.
% ๐‘ฒ๐‘ฒ๐‘ฒ =
๐’Ž๐’Ž๐’Ž๐’Ž ๐‘ฒ๐‘ฒ๐‘ฒ
๐’™
๐’Ž๐’Ž๐’Ž๐’Ž ๐’”๐’”๐’โ€ฒ ๐’
๐Ÿ๐Ÿ๐Ÿ%; ๏ฟฝ
๐Ÿ‘๐Ÿ‘.๐Ÿ’ ๐’ˆ ๐‘ฒ๐‘ฒ๐‘ฒ
๐Ÿ ๐‘ณ ๐’”๐’”๐’โ€ฒ ๐’
๐Ÿ ๐’Ž๐’Ž ๐’”๐’”๐’โ€ฒ ๐’
๏ฟฝ
๏ฟฝ
๏ฟฝ
๏ฟฝ
๏ฟฝ๐’™
๐Ÿ.๐Ÿ“ ๐‘ณ ๐’”๐’”๐’โ€ฒ ๐’
๐Ÿ๐Ÿ๐ŸŽ๐ŸŽ ๐’Ž๐’Ž ๐’”๐’”๐’โ€ฒ๐’
๐Ÿ.๐ŸŽ๐ŸŽ ๐’ˆ ๐’”๐’”๐’โ€ฒ ๐’
๐Ÿ๐Ÿ๐Ÿ% = ๐Ÿ. ๐Ÿ% ๐‘ฒ๐‘ฒ๐‘ฒ
5. For this problem we must use the concentration as one of several conversion factors that will
allow us to determine the number of sodium ions in each solution. To account for the fact that
sodium chloride contains one Na+ ion per formula unit while sodium carbonate contains two. This is
done by incorporating a mole Na+ ions to mole compound conversion factor.
๐ŸŽ. ๐Ÿ”๐Ÿ”๐Ÿ” ๐’Ž๐’Ž๐’Ž ๐‘ต๐’‚๐’‚๐’‚ ๐Ÿ ๐’Ž๐’Ž๐’Ž ๐‘ต๐’‚+
(๐Ÿ๐Ÿ๐Ÿ. ๐ŸŽ ๐’Ž๐’Ž ๐‘ต๐‘ต๐‘ต๐‘ต ๐’”๐’”๐’โ€ฒ ๐’) ๏ฟฝ
๏ฟฝ๏ฟฝ
๏ฟฝ = ๐ŸŽ. ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ ๐’Ž๐’Ž๐’Ž ๐‘ต๐’‚+ ๐’Š๐’Š๐’Š๐’Š
๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐’Ž๐’Ž ๐’”๐’”๐’โ€ฒ ๐’
๐Ÿ ๐’Ž๐’Ž๐’Ž ๐‘ต๐‘ต๐‘ต๐‘ต
๐Ÿ”. ๐Ÿ‘ ๐’ˆ ๐‘ต๐’‚๐Ÿ ๐‘ช๐‘ถ๐Ÿ‘
๐Ÿ ๐’Ž๐’Ž๐’Ž ๐‘ต๐’‚๐Ÿ ๐‘ช๐‘ถ๐Ÿ‘
๐Ÿ ๐’Ž๐’Ž๐’Ž ๐‘ต๐’‚+
(๐Ÿ๐Ÿ๐Ÿ. ๐ŸŽ ๐’ˆ ๐‘ต๐’‚๐Ÿ ๐‘ช๐‘ถ๐Ÿ‘ ๐’”๐’”๐’”โ€ฒ๐’) ๏ฟฝ
๏ฟฝ
๏ฟฝ
๏ฟฝ
๏ฟฝ
๏ฟฝ
๐Ÿ๐Ÿ๐Ÿ ๐’ˆ ๐’”๐’”๐’โ€ฒ ๐’
๐Ÿ๐Ÿ๐Ÿ. ๐Ÿ—๐Ÿ— ๐’ˆ ๐‘ต๐’‚๐Ÿ ๐‘ช๐‘ถ๐Ÿ‘ ๐Ÿ ๐’Ž๐’Ž๐’Ž ๐‘ต๐’‚๐Ÿ ๐‘ช๐‘ถ๐Ÿ‘
= ๐ŸŽ. ๐Ÿ๐Ÿ ๐’Ž๐’Ž๐’Ž ๐‘ต๐’‚+ ๐’Š๐’Š๐’Š๐’Š
The Na2CO3 contains more sodium ions.
6. This problem requires a number of conversion factors. The question asks how much benzene will
be consumed in 1 year, so we will start our dimensional analysis with the quantity 1 year. Another
important note is that the benzene concentration is given as 5 ฮผg/L, or 5x10-6 g benzene/L solution.
๐Ÿ‘๐Ÿ‘๐Ÿ‘ ๐’…๐’…๐’…๐’… ๐ŸŽ. ๐Ÿ—๐Ÿ— ๐‘ณ ๐’˜๐’˜๐’˜๐’˜๐’˜ ๐Ÿ“ ๐๐ ๐’ƒ๐’ƒ๐’ƒ๐’ƒ๐’ƒ๐’ƒ๐’ƒ
๐Ÿ ๐’ˆ ๐’ƒ๐’ƒ๐’ƒ๐’ƒ๐’ƒ๐’ƒ๐’ƒ
(๐Ÿ ๐’š๐’š) ๏ฟฝ
๏ฟฝ๏ฟฝ
๏ฟฝ๏ฟฝ
๏ฟฝ๏ฟฝ ๐Ÿ”
๏ฟฝ = ๐ŸŽ. ๐ŸŽ๐ŸŽ๐ŸŽ ๐’ˆ ๐’ƒ๐’ƒ๐’ƒ๐’ƒ๐’ƒ๐’ƒ๐’ƒ
๐Ÿ ๐’š๐’š
๐Ÿ ๐’…๐’…๐’…
๐Ÿ ๐‘ณ ๐’˜๐’˜๐’˜๐’˜๐’˜
๐Ÿ๐ŸŽ ๐๐ ๐’ƒ๐’ƒ๐’ƒ๐’ƒ๐’ƒ๐’ƒ๐’ƒ
7. This problem utilizes the dilution equation, ๐‘ช๐Ÿ ๐‘ฝ๐Ÿ = ๐‘ช๐Ÿ ๐‘ฝ๐Ÿ. We will rearrange the variables to
isolate the variable of interest. Also, notice that the volume and concentrations need not be
converted to liters or molarity, respectively. As long as the units cancel by dimensional anlaysis,
they do not need to be converted into other units.
๐‘ฝ๐’”๐’”๐’”๐’”๐’” =
(๐ŸŽ. ๐Ÿ–๐Ÿ– ๐‘ด)(๐Ÿ๐Ÿ๐Ÿ ๐’Ž๐’Ž)
๐‘ช๐’…๐’…๐’…๐’…๐’…๐’…๐’… ๐‘ฝ๐’…๐’…๐’…๐’…๐’…๐’…๐’…
=
= ๐Ÿ๐Ÿ ๐’Ž๐’Ž ๐’”๐’”๐’”๐’”๐’”
(๐Ÿ“. ๐ŸŽ ๐‘ด)
๐‘ช๐’”๐’”๐’”๐’”๐’”
8. Again, this problem employs the dilution equation. The most difficult part of this problem may
be associating each value with a variable in the dilution equation.
C1 = concentration of stock solution = ??
C2 = concentration of diluted solution = 40.0 mM
V1 = vol. of stock solution = 20.0 mL
V2 = vol. of diluted solution = 1.00 L=1000 mL
Before substituting the values for the variables, we need to convert one of the volume measurement
units so these units will cancel.
๐‘ช๐Ÿ =
(๐Ÿ’๐Ÿ’. ๐ŸŽ ๐’Ž๐’Ž)(๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐’Ž๐’Ž)
๐‘ช ๐Ÿ ๐‘ฝ๐Ÿ
=
= ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐’Ž๐’Ž = ๐Ÿ. ๐ŸŽ๐ŸŽ ๐‘ด
(๐Ÿ๐Ÿ. ๐ŸŽ ๐’Ž๐’Ž)
๐‘ฝ๐Ÿ
9. In this problem, we need to convert 0.00020 moles of lead(II) nitrate to mass before we can use
the ppm measurement to find the mass of the solution containing 0.00020 moles of the compound.
๐Ÿ๐Ÿ.๐Ÿ– ๐’ˆ ๐‘ท๐‘ท(๐‘ต๐‘ถ๐Ÿ‘ )๐Ÿ
Recall that ppm can be written as a conversion factor: ๏ฟฝ
๏ฟฝ.
๐Ÿ”
โ€ฒ
๐Ÿ๐Ÿ๐Ÿ๐ŸŽ ๐’ˆ ๐’”๐’”๐’ ๐’
๐ŸŽ. ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ๐ŸŽ ๐’Ž๐’Ž๐’Ž ๐‘ท๐‘ท(๐‘ต๐‘ถ๐Ÿ‘ )๐Ÿ ๏ฟฝ
๐Ÿ‘๐Ÿ‘๐Ÿ‘. ๐Ÿ๐Ÿ ๐’ˆ ๐‘ท๐‘ท(๐‘ต๐‘ถ๐Ÿ‘ )๐Ÿ
๐Ÿ ๐’™ ๐Ÿ๐ŸŽ๐Ÿ” ๐’ˆ ๐’”๐’”๐’”โ€ฒ๐’
๏ฟฝ๏ฟฝ
๏ฟฝ = ๐Ÿ๐Ÿ๐Ÿ๐Ÿ ๐’ˆ ๐’”๐’”๐’โ€ฒ ๐’
๐Ÿ๐Ÿ. ๐Ÿ– ๐’ˆ ๐‘ท๐‘ท(๐‘ต๐‘ถ๐Ÿ‘ )๐Ÿ
๐Ÿ ๐’Ž๐’Ž๐’Ž ๐‘ท๐‘ท(๐‘ต๐‘ถ๐Ÿ‘ )๐Ÿ
10. As a reminder, mass % is the mass of the solute divided by the mass of the solution, not the
volume. To convert to mass, we use the density, which is the mass of the solution over the volume of
the solution.
(๐Ÿ“๐Ÿ“๐Ÿ“. ๐’Ž๐’Ž ๐’”๐’”๐’โ€ฒ ๐’) ๏ฟฝ
๐Ÿ. ๐Ÿ๐Ÿ ๐’ˆ ๐’”๐’”๐’โ€ฒ ๐’ ๐Ÿ‘๐Ÿ‘. ๐ŸŽ ๐’ˆ ๐‘ฏ๐‘ฏ๐‘ถ๐Ÿ‘
๐Ÿ ๐’Ž๐’Ž๐’Ž ๐‘ฏ๐‘ฏ๐‘ถ๐Ÿ‘
๏ฟฝ๏ฟฝ
๏ฟฝ๏ฟฝ
๏ฟฝ = ๐Ÿ. ๐Ÿ–๐Ÿ– ๐’Ž๐’Ž๐’Ž ๐‘ฏ๐‘ฏ๐‘ถ๐Ÿ‘
โ€ฒ
โ€ฒ
๐Ÿ ๐’Ž๐’Ž ๐’”๐’”๐’ ๐’
๐Ÿ๐Ÿ๐Ÿ ๐’ˆ ๐’”๐’”๐’ ๐’
๐Ÿ”๐Ÿ”. ๐ŸŽ๐ŸŽ ๐’ˆ ๐‘ฏ๐‘ฏ๐‘ถ๐Ÿ‘