5.2 Binomial Theorem A14.notebook May 05, 2014 Binomial Theorem t0,0 t1,0 t1,1 t2,0 t2,1 t2,2 t3,0 t3,1 t3,2 t3,3 t4,0 t4,1 t4,2 t4,3 t4,4 1 0C0 1 1 1C0 1C1 1 2 1 2C0 2C1 2C2 3C0 3C1 3C2 3C3 1 3 3 1 1 4 6 4 1 4C0 4C1 4C2 4C3 4C4 * Each term in Pascal's Triangle corresponds to a value of nCr Binomial Expansion Recall: Binomial (2 terms) Ex. (x+y), (3x+8), (2x21) Expand a) (a+b)1 = a + b b) (a+b)2 =(a+b)(a+b) = a2+ab+ab+b2 = a2+2ab+b2 c) (a+b)3 =(a+b)(a+b)(a+b) =(a2+2ab+b2)(a+b) =a3+3a2b+3ab2+b2 * The coefficients of each term in the expansion of (a+b) n corresponds to the terms in row ' n' of Pascal's Triange 5.2 Binomial Theorem A14.notebook May 05, 2014 Binomial Theorem (a+b)n = nC0an + nC1an1 b1 + nC2an2 b2 + nC3an3 b3 + ... + nCranrbr + nCnbn * Exponents on the 1st variable start at 'n' and decrease by 1 each term * Exponents on the 2nd variable start at 0 and increase by 1 each term * Coefficient starts at nCr, and the number you are 'choosing' (nC_) starts at 0 and increases by one for each term Ex. Expand, using binomial theorem a) (a+b)5 = 5C0a5b0 + 5C1a4b1 + 5C2a3b2 + 5C3a2b3 + 5C4a1b4 + 5C5a0b5 = 1a5 + 5a4b1 + 10a3b2 + 10a2b3 + 5a1b4 + 1b5 b) (2x1)4 = 4C0(2x)4+4C1(2x)3(1)1+4C2(2x)2(1)2+4C3(2x)1(1)3+4C4(1)4 = 1(16x4) + 4(8x3)(1) + 6(4x2)(1) + 4(2x)(1) + 1(1) = 16x4 32x3 + 24x2 8x + 1 c) (3x2y)3 = 3C0(3x)3 + 3C1(3x)2(2y)1 + 3C2(3x)1(2y)2 + 3C3(2y)3 = 1(27x3) + 3(9x2)(2y) + 3(3x)(4y2) +1(8y3) = 27x3 54x2y + 36xy2 8y3 5.2 Binomial Theorem A14.notebook May 05, 2014 For (x + y)n, the general term is: This formula can be used to determine the (r + 1)st term in a binomial expansion. Remember pascal's triangle starts at row 0. Example 1: In the expansion of (2x+5)9 determine the 4 th term in the polynomial. t r+1 = t4 Example 3: In the expansion of (x + 3)12 determine the coefficient of the x5 term. ∴ r=3 5.2 Binomial Theorem A14.notebook May 05, 2014 Example 4: Find the term containing in since this binomial has "x" in both terms the concept used in ex 3 will not work. Example 5 : Find the constant term (contains Practise: p. 293 #2, 3, 9ace, 10, 11ace, 12 ) in
© Copyright 2026 Paperzz