ALGEBRA Factors and Zeros of Polynomials Let p(x) = a11x" + a, _ 1x" - 1 + · · · + a 1x + a 0 be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a solution of the equation p(x) = 0. Furthermore, (x - a) is a factor of the polynomial. Fundamental Theorem of Algebra An nth degree polynomial has n (not necessarily distinct) zeros. Although all of these zeros may be imaginary, a real polynomial of odd degree must have at least one real zero. Quadratic Formula If p(x) = ax2 + bx + c, and 0 ::5 b 2 - 4ac, then the real zeros of pare x = ( - b ± v'b2 - 4ac)/2a. Special Factors x2 - a2 x3 + a3 = (x - a)(x + a) = (x + a)(x2 x3 - a 3 = (x - a)(x2 + ax + a 2) x4 - a4 == (x2 - a2)(x2 + a2) -ax+ a 2) Binomial Theorem + y )2 = x 2 + 2xy + y 2 (x + y )3 = x 3 + 3x2y + 3xy2 + y3 (x + y)4 = x 4 + 4x 3y + 6x2y 2 + 4xy3 + y4 (x - y )2 (x (x + y)" = x" + nx" - 1y + (x- y)" = x" - nx" - 1y + n(n - I) 2! n(n - I) 2! =xz - (x - y )3 = x3 - (x - y)4 = x4 - + y2 + 3xy2 - y 3 4xly + fu2y2- 4xy3 + y4 2xy 3x 2y ~ x" - -yl + · · · + nxy" - 1 + y" x" - 2 y 2 • • • - ± nxy" - 1 ::;:: y" Rational Zero Theorem If p(x) = anx" + a 11 _ 1x" - I + · · · + a 1x + a 0 has integer coefficients, then every rational zero of p is of the form x = r/ s, where r is a factor of a 0 and s is a factor of a11• Factoring by Grouping acx3 + adx2 + bcx + bd = ax2(cx +d) + b(cx +d) = (ax 2 + b)(cx +d) Arithmetic Operations ab + ac = a a(b + c) c b+d= ad+ be bd m(~)(~) ~ a -=- a(~)= a: a-b b-a c-d=d-c = (~) = c be ab + ac = b +c a Exponents and Radicals a0 = I, a*O (~Y = ~ (ab)X = aXbX ~ = am/n axa>' = a.r+y 1 a-x=ax Ja = al/2 -a" = ax-y ~=~~ (UX)Y a)' = a-"Y .zy'Q = 0 1/n ~=~ ---- ~~----'"1 FORMULAS fRQM GEOMETRY Sector of Circular Ring (p = average radius, w = width of ring, Triangle h "" a sin () 1 Area ""' - bh 2 (Law of Cosines) c2 = a2 + b2 - Area = 8pw 2ab cos () Right Triangle Ellipse (Pythagorean Theorem) cZ = a Z + bZ Area = 1rab b Circumference "'" 27T Jo/- Cone Equilateral Triangle h= w ()in radians) ~s (A = area of base) Ah Volume = 3 2 ~sz Area = - 4 Parallelogram Right Circular Cone Area = bit 1rr2h Volume = - 3 Lateral Surface Area "" Frustum of Right Circular Cone 7r(r 2 + rR + R 2 )1t Trapezoid h Area "" 2 (a + b) Circle Circumference "" 21Tr Vo 1ume = 3 Lateral Surface Area = 1rs(R + r) G Right Circular Cylinder Volume = 1Trh Lateral Surface Area Sector of Circle Sphere (8 in radians) Volume = i 1Tr3 3 Surface Area = 47rr2 ()r2 Area = 2 s = w.J ~ + 112 r o= 27Trh co c: ·e Ill Ill ..... r() Ill Circular Ring Wedge (p = average radius, w == width of ring) Area = 7r(R 2 - r 2 ) = 21Tpw (A ::r area of upper face, B = area of base) A = B sec() ~------------------------------------~------------------------------------~ co ra co r:: ~ cU 8..... "' -"" 0 e m g
© Copyright 2026 Paperzz