(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Tutorial Sheet 6 ::: MAL101 Higher order ODEs, System of ODEs, Power Series Method Find the general solution. (a) y 000 + 3y 00 + 3y 0 + y = 8ex + x + 3 (b) x3 y 000 + x2 y 00 − 2xy 0 + 2y = x3 ln x (c) xy 000 + 3y 00 = ex Solve the IVPs. (a) y 000 + 3y 00 + 3y 0 + y = e−x sin x, y(0) = 2, y 0 (0) = 0, y 00 (0) = −1. (b) x3 y 000 − 3x2 y 00 + 6xy 0 − 6y = 24x5 , y(1) = 1, y 0 (1) = 3, y 00 (1) = 14. (c) y iv + 10y 00 + 9y = 40 sinh x, y(0) = 0, y 0 (0) = 6, y 00 (0) = 0, y 000 (0) = −26. Find the real general solution of the following systems. (a) y10 = −8y1 − 2y2 , y20 = 2y1 − 4y2 . (b) y10 = −3y1 − y2 + 2y3 , y20 = −4y2 + 2y3 , y30 = y2 − 5y3 . (c) y10 = −y1 − 4y2 + 2y3 , y20 = 2y1 + 5y2 − y3 , y30 = 2y1 + 2y2 + 2y3 . Solve the following IVPs. (a) y10 = 2y1 + 2y2 , y20 = 5y1 − y2 , y1 (0) = 0, y2 (0) = −7. (b) y10 = −14y1 + 10y2 , y20 = −5y1 + y2 , y1 (0) = −1, y2 (0) = 1. Solve the following systems of equations. (a) y10 = y2 + e3t , y20 = y1 − 3e3t (b) y10 = −2y1 + y2 , y20 = −y1 + et (c) y10 = 3y1 + y2 − 3 sin 3t, y20 = 7y1 − 3y2 + 9 cos 3t − 16 sin 3t Solve the following IVPs. (a) y10 = y2 − 5 sin t, y20 = −4y1 + 17 cos t, y1 (0) = 5, y2 (0) = 2. (b) y10 = y1 + 4y2 − t2 + 6t, y20 = y1 + y2 − t2 + t − 1, y1 (0) = 2, y2 (0) = −1. (c) y10 = 5y1 + 4y2 − 5t2 + 6t + 25, y20 = y1 + 2y2 − t2 + 2t + 4, y1 (0) = 0, y2 (0) = 0 Determine the radius of convergence of the following power series. P P P P∞ (n+3)2 n n(n+1) (2n)! n 4n n (b) ∞ (a) ∞ (x − 3)2n (c) ∞ n=1 n=0 (−1) x n=0 (2n+2)(2n+4) x (d) n=4 (n−3)4 x 2n Solve the following using the power series method. (a) y 00 + xy = 0 (b) y 00 − xy 0 + y = 0 (c) y 00 − y 0 = 0 (d) (2x2 − 3x + 1)y 00 + 2xy 0 − 2y = 0 (a) Prove the so called Rodrigue’s formula for the Legendre polynomial. 1 dn Pn (x) = n [(x2 − 1)n ] (?) n 2 n! dx Hint: Expand (x2 − 1)n using the binomial expansion and then differentiate it n times term by term. (b) Use (?) to calculate P0 (x), P1 (x), P2 (x), P3 (x) and P4 (x). (a) Show that ∞ X 1 √ = Pn (x)tn (??) 1 − 2xt + t2 n=0 Hint: Use the binomial series for [1 − t(2x − t)]−1/2 and show that the coefficient of tn is Pn (x). (b) Using (??) show that Pn (1) = 1, Pn (−1) = (−1)n , P2n+1 (0) = 0, P2n (0) = (−1)n 1·3···(2n−1) . 2n n! (c) Differentiate (??) with respect to t to show that ∞ ∞ X X n 2 (x − t) Pn (x)t = (1 − 2xt + t ) nPn (x)tn−1 n=0 n=1 Equate the coefficients of tn to obtain the following recursion formula. (n + 1)Pn+1 (x) = (2n + 1)xPn (x) − nPn−1 (x) (†) (d) Assuming that you know P0 (x) = 1 and P1 (x) = x, use (†) to calculate P2 (x), P3 (x), P4 (x) and P5 (x). (11) Use the Frobenius method to find a basis of solutions. (a) xy 00 + 2y 0 − xy = 0 (b) x2 y 00 + 4xy 0 + (x2 + 2)y = 0 (c) xy 00 + (2x + 1)y 0 + (x + 1)y = 0 (d) (x2 + x)y 00 + (4x + 2)y 0 + 2y = 0 ::: END :::
© Copyright 2026 Paperzz