Solutions to quizzes 1. Quiz 1 Evaluate the integral Z sin x ln (cos x) dx Solution Recall the formula for integration by parts: Z Z 0 f (x)g (x) dx = f (x)g(x) − f 0 (x)g(x) dx • Since we don’t know how to find the antiderivative of ln cos x we cannot choose ln cos x for g 0 . So we choose f = ln cos x and g 0 = sin x. • We find that g = − cos x by antidifferentiating g 0 = sin x and f 0 = cos1 x (− sin x) by differentiating f = ln cos x (and using the Chain Rule). • Applying the formula for integration by parts we get: Z Z 1 (−sinx)(− cos x) dx = sin x ln (cos x) dx = ln (cos x) · (− cos x) − cos x Z = − cos x ln (cos x) − sin x dx = − cos x ln (cos x) − (− cos x) + C = − cos x ln (cos x) + cos x + C 2 2. Quiz 2 Evaluate the integral Z cos5 x tan2 x dx Solution • We can rewrite the integrand as the product of a power of sine and a power of cosine using the definition sin x of tan x, that is tan x = cos x Z Z Z sin2 x 5 2 5 = cos3 x sin2 x dx cos x tan x dx = cos x · cos2 x • Since the power of cosine is odd, we save a factor of cos x to prepare for the substitution u = sin x Z Z Z 3 2 2 2 cos x sin x dx = cos x sin x cos x dx = (1 − sin2 x) sin2 x cos x dx • Where we used the trigonometric identity cos2 x = 1 − sin2 x in the last step. If we now set u = sin x, then du = cos x dx, so using the substitution rule: Z (1 − sin2 x) sin2 x cos x dx = Z (1 − u2 )u2 du = Z • It turns out that Z cos5 x tan2 x dx = (u2 − u4 ) du = u3 u5 sin3 x sin5 x − +C = − +C 3 5 3 5 sin3 x sin5 x − +C 3 5 3 3. Quiz 3 Evaluate the integral Z √ 3 x dx x+1 Solution There are are at least two ways to solve this integral. First way. We can use the rationalizing substitution approach of Section 7.4 and let u = for x we obtain x = u3 − 1, whence dx = 3u2 du. Thus, using the substitution rule: Z Z 3 Z x u −1 2 √ dx = · 3u du = 3 u4 − u du 3 u x+1 ! 5 (x + 1)5/3 (x + 1)2/3 u u2 =3 − +C =3 − +C 5 2 5 2 √ 3 x + 1. Solving Second way. Or alternatively, we can substitute v = x + 1. We have dv = dx, so, by the substitution rule: Z Z Z v−1 v 1 x √ √ √ dx = dv = −√ dv = 3 3 3 3 v v v x+1 2 1 Z v 3 +1 v − 3 +1 2/3 −1/3 = v −v dv = 2 − 1 +C = −3 + 1 3 +1 ! 3 5/3 3 2/3 (x + 1)5/3 (x + 1)2/3 = v − v +C =3 − +C 5 2 5 2
© Copyright 2026 Paperzz