Studyoftheblackbodyradiation 1. Purpose: Analyze the blackbody radiation coming from different surfaces and verify the StefanBoltzmannlaw[1].Theemittedradiationismeasuredwitharadiometer. 2. Apparatus: RadiometerEG-45Daedalon Leslie’scubeandthermometerEH-10Daedalon Stefan-BoltzmannsourceEH-15Daedalonwithpowersupplyequippedwithacurrentlimiter. TwomultimeterstomeasurethecurrentandvoltageoftheEH-15. 3. Descriptionofexperiment: Measurement of radiant energy is vital, among other, to the understanding of the energy balance of the earth and its atmosphere. All objects emit electromagnetic radiation with intensity that depends on the absolute temperature of their surface. At the same time, all objects absorb energy from their surrounding such that at equilibrium temperature, the absorbed and emitted energies are equal. A radiating hot body is said to emit “black body radiation”. However, a black body is an ideal, theoretical object able to absorb the entire energyfallingonitssurface.Inreality,allobjectspartiallyreflecttheincomingradiation.The radiated power (integrated over all frequencies) is increasing with the increase of body’s temperature.SuchdependenceisgivenbytheStefan-Boltzmannlaw[1]: P(T)=εσT4(1) whereP(T)istheirradiance, σ=0.56686·10-7W/(m2K4)isknownasStefan’sconstantand εis theemissivityparameter(ε=1foranidealblackbodyand ε<1forrealobjects).Theirradiance representsthepowerperunitareaandisthereforemeasuredinW/m2. Inthisexperiment,theirradianceemittedbyvariousobjectsismeasuredwithradiometerEG45capabletointegrateawiderangeoffrequencies,fromthewarmthofahandprintleftona table to direct sunlight. The radiometer is an evaporated thin film resistor array known as a “thermopile”.It’smadeoftungsten(W)whichresistancevarieswithtemperature.Tungsten’s specific heat is very small (~30 times smaller than water specific heat) so the instrument respondsveryquicklytoatemperaturechange.Thedetectorisenclosedinasmallcasefilled withArhavingawindowmadeofpotassiumbromide(KBr)whichallowsradiationtransmission even in the far infrared region. The ensemble is mounted in a massive aluminum housing to maintain thermal equilibrium. The detector measures the radiation balance between the source and its own temperature, so it is important to keep the detector at constant temperature during the entire experiment. The entrance aperture is conical with a 60° acceptanceangleandisclosedwithshutter(mountedandthermalizedonthesamealuminum enclosure).Theshutteristobeopenedonlyduringmeasurementsoftheirradianceincoming throughthecone.TheRANGEswitchindicatesthefull-scalevalue,soareadingof10onRange 100means100W/m2(read[3],[4]and[5]!). 1 WewillverifytwoaspectsofStefan-Boltzmannlaw,namelythetemperaturedependenceand thevariationofεfromobjecttoobject[2].First,oneusestheStefan-Boltzmann(S-B)source EH-15toverifytheT4lawandnext,theLeslie’scubetostudytheemissivityofvarioussurfaces. PART1. The radiation from a hot W filament is measured with the EG-45 radiometer as a function of filament temperature T (see Fig. 1 from [4]). To measure the temperature, one measuresthefilamentresistanceandthenusesitstemperaturedependence: R(T)=R0[1+α(T-T0)](2) where α=0.0045 K-1 while R0 and T0 are the room temperature resistance and temperature, respectively(solveforT!).TheresistanceRisfoundusinga4wireconfigurationtoreducethe effect of contact resistances. In this part, one studies the temperature and distance dependenceoftheradiatedpower. Fig.1.ExperimentalsetuptomeasureStefan-Boltzmannlaw. PART2. The Leslie’s cube provides a way to measure the emission from 4 different faces of a cubeandcomparetheiremissivity(seeFig.2from[5]).Thecubeisfilledwithwarmwaterto ensureidenticaltemperaturesonallfaces. Fig.2.Experimentalsetuptomeasuretheemissivityof4differentfacesofLeslie’scube. Inthebackgroundsectionofyourreport,givetheerrorpropagationanalysis. 4. Measurementprocedure: 2 PART1. 4.1 TurnONtheradiometerandsetitonastablesupportfacingtheS-Bsource.Measure the distance from the filament to detector (located in the same plane as the shutter control rod)andadjustitto10cm. 4.2 IMPORTANT:makesurethepowersupplyhastheoutputturnedtozero!Otherwisethe lampwillburnoutimmediately;NEVERexceed1.7Ampsinthefilamentcircuit!TurntheVandI limiterknobsfullytozero(anticw),shortcutthe+and–outputswithabananacable,turnon thepowersupply,turntheVknobjustfewdegreescwtoincreaseabitthevoltagelimit.Then increasethecurrentlimittillyouread1.7Aonthepowersupplydisplay.YouDON’Tchangethe currentlimiterfromhereon!!ConnecttheS-Bsourcepowersupplyandmultimeters(Fig.1). 4.3 Darkentheroom(ifpossible),closetheshutterandzerothemeterwiththeZEROAdjust knobonRange1.Dothiseverytimeyouchangethescaleandcheckeditfromtimetotime. 4.4 Opentheshutterandnotethereading,iflargerthan0.2findthesourceofradiation. 4.5 Measurethefilamentresistanceatlowcurrent/voltage(tensofmAshouldcorrespond to~30mV).ThiswillbeR0andyouhavetomeasureitverycarefully.MeasureT0oftheroom. 4.6 Checktheradiometerzero.Opentheshutterandrecordthesignal. 4.7 Take~20datapoints(V,I,PowerP)byincreasingthevoltage.Showspectrafor~1Aand ~1.3 A; discuss their differences (use the ASEQ spectrometer manual). Do NOT overpass 1.7 Amps.Checkthezeroeverytimeyouhavetochangescale.Setcurrentto1.4Aandgradually increasethedistancedfilament–detector.Take~20datapoints(V,I,P,d). PART2 4.8 Makesureyourhandsareclean.Takethecubeoutoftheplasticbag.NEVERtouchthe polishedbrasssurface.Inspectthesurfacesandifyoufindthemdirty,cleanthemcarefully. 4.9 Arrange the cube as shown in Fig. 2. Fill it with hot water (~60-70° C). You have to performtheexperimentinashortamountoftimesuchthatthetemperatureisconstant.You willmeasureandnotewatertemperatureatthebeginningandtheendoftheexperiment. 4.9 Position each of the four faces in front of the radiometer and measure the irradiance. Checkandadjustthezeroifneedisbeforeeachmeasurement. 5. Analysis: PART1 5.1 For each data point you should present the Voltage, Current, Resistance, Temperature and Irradiance values (V,I,R,T,P), each with its own uncertainty (so 10 columns). Break the informationin2-3tables.ForinstancegiveatableforV,I,Rtogetherwiththeiruncertainties. GiveanothertableforP,itsuncertainty,TanditsuncertaintytogetherwithacolumnforT4. 5.2 PlotPvsT4.Whyisalinearfitadequate?Usingtheslopemanditsuncertainty,estimate an effective radius Rf of the filament and its uncertainty. Assume ε=1. All the power (that is, irradiance σT4 times surface) of the ~spherical filament exits through a surface 4πRf2 and reaches another spherical surface 4πd2 with d the filament-detector distance. Express the 3 irradianceseenbydetectorandthustheslopemasafunctionofσ,Rfandd. 5.3 MakeatableforlogP,logTandtheuncertaintyoflogP(explainhowyoucalculateit!). PlotlogPvslogT.Discusstheshapeoftheplot,isalinearfitadequate?Extractthevalueofthe slopeanditsuncertainty.Compareittoyourtheoreticalexpectation. 5.4 Asyoucansee,Pisdecreasingwhenincreasingd.Whatisthetheoreticaldecreasethat youexpect?Knowingthat,howshouldyouplotthisdecreasesuchthatyouobtainalinearfit (anddotheplot).Usingtheslopem’anditsuncertainty,estimateaneffectiveradiusRfofthe filamentanditsuncertainty(remember5.2!).ComparetheresultwithRfcalculatedat5.2. PART2 5.5 Tabulatethevaluesofirradiancevsthetypeofsurface(blackpaint,whitepaint,rough brass,polishedbrass).Explainwhyyouseedifferentvalues. 5.6 Assume that the black painted side approximates a blackbody emitter and find the relativeemissivitiesofthethreesides.Compareyourresultswithexpectedvalues(trytofind adequateliterature).Forinstance,thepolishedbrassvalueshouldbearound0.03. 6.Questions: 6.1 WhatistheEarth’sgreenhouseeffect? 6.2WhatisthesolarirradianceattheentranceinEarth’satmosphere?(readthePDFs!!) 6.3 Give the formula of the blackbody spectra, also known as Planck’s law, as P(λ). Plot ln(P(λ))vs λfortwotemperatures(sayT=1000Kand3000Kfor λfrom0.2to9µm);youmay needtolimitthe λaxisinyourplots.Findthevaluesof λwhereP(λ)ismaximum.Bymeansof firstderivative,describethedemonstrationofWien’slawandverifyitagainstthetwomaxima thatyoufound. 6.4 Explain which of the two plots (T4 and log-log) is more robust against an incorrect irradiancezerooffset?(hint:supposeanoffsetpisaddedtotherighthandsideofEq.(1)). 6.5Whyisimportanttohaveuniformtemperatureinsidethecube?Whywaterisbetterthan justroomtemperatureair? 7.References [1]ModernPhysicsforScientistsandEngineers,byS.T.ThorntonandA.Rex,4thEd.,Cengage Learning(2012),Chapter3.5. [2]TheArtofExperimentalPhysics,byDarylW.PrestonandEricR.Dietz,JohnWileyandSons (1991),Chapter8. [3]EG-45Radiometerinstructionmanual,PDFavailableonline. [4]EH-15Stefan-BoltzmannSourceinstructionmanual,PDFavailableonline. [5]EH-10Leslie’scubeinstructionmanual,PDFavailableonline. 4
© Copyright 2026 Paperzz