E-Z HL Trig Problems 1. Simplify the following expressions: (a) cos 37° cos 23° − sin 37°sin 23° cos 37°cos 23° − sin 37°sin 23° = cos ( 37° + 23° ) = cos ( 60° ) = 1 2 ⎛π ⎞ ⎛π ⎞ (c) sin ⎜ + x ⎟ − sin ⎜ − x ⎟ ⎝3 ⎠ ⎝3 ⎠ (b) sin 28° cos 42° + sin 28° cos 42° sin 28°cos 42° + sin 28°cos 42° = sin ( 28° + 42° ) = sin 70° ⎛π ⎞ ⎛π ⎞ (d) cos ⎜ + x ⎟ + cos ⎜ − x ⎟ ⎝6 ⎠ ⎝6 ⎠ ⎛π ⎞ ⎛π ⎞ sin ⎜ + x ⎟ − sin ⎜ − x ⎟ ⎝3 ⎠ ⎝3 ⎠ ⎛π ⎞ ⎛π ⎞ cos ⎜ + x ⎟ + cos ⎜ − x ⎟ ⎝6 ⎠ ⎝6 ⎠ π π π π cos x + cos sin x − sin cos x + cos sin x 3 3 3 3 π = 2 cos sin x 3 1 = 2 sin x 2 = sin x π π π π = cos cos x − sin sin x + cos cos x + sin sin x 6 6 6 6 π = 2 cos cos x 6 3 =2 cos x 2 = 3 cos x = sin π⎞ ⎛ 2π ⎞ ⎛ − x ⎟ + sin ⎜ x − ⎟ (e) sin ⎜ ⎝ 3 ⎠ ⎝ 3⎠ π⎞ ⎛ 2π ⎞ ⎛ sin ⎜ − x ⎟ + sin ⎜ x − ⎟ ⎝ 3 ⎠ ⎝ 3⎠ 2π 2π π π cos x − cos sin x + sin x cos − cos x sin 3 3 3 3 3 1 1 3 = cos x + sin x + sin x − cos x 2 2 2 2 = sin x = sin sin θ + sin 3θ + sin 5θ = tan 3θ 2. Prove: cosθ + cos 3θ + cos 5θ sin θ + sin 3θ + sin 5θ cosθ + cos 3θ + cos 5θ sin(3θ − 2θ ) + sin 3θ + sin(3θ + 2θ ) = cos(3θ − 2θ ) + cos 3θ + cos(3θ + 2θ ) sin 3θ cos 2θ − cos 3θ sin 2θ + sin 3θ + sin 3θ cos 2θ + cos 3θ sin 2θ = cos 3θ cos 2θ + sin 3θ sin 2θ + cos 3θ + cos 3θ cos 2θ − sin 3θ sin 2θ 2 sin 3θ cos 2θ + sin 3θ = 2 cos 3θ cos 2θ + cos 3θ sin 3θ (2 cos 2θ + 1) = cos 3θ (2 cos 2θ + 1) sin 3θ = cos 3θ = tan 3θ 3. Prove: sin(x − y) + sin x + sin(x + y) = tan x cos(x − y) + cos x + cos(x + y) sin(x − y) + sin x + sin(x + y) cos(x − y) + cos x + cos(x + y) sin x cos y − cos x sin y + sin x + sin x cos y + cos x sin y = cos x cos y + sin x sin y + cos x + cos x cos y − sin x sin y 2 sin x cos y + sin x = 2 cos x cos y + cos x sin x(2 cos y + 1) = cos x(2 cos y + 1) sin x = cos x = tan x 4. Prove: cos(A + B + C) + cos(A + B − C) + cos(A − B + C) + cos(−A + B + C) = 4 cos A cos B cosC cos(A + B + C) + cos(A + B − C) + cos(A − B + C) + cos(−A + B + C) = cos A cos(B + C) − sin Asin(B + C) + cos A cos(B − C) − sin Asin(B − C) + cos A cos(B − C) + sin Asin(B − C) + cos(−A)cos(B + C) − sin(−A)sin(B + C) = cos A cos(B + C) + cos A cos(B − C) − sin Asin(B − C) + cos A cos(B − C) + sin Asin(B − C) + cos(A)cos(B + C) = 2 cos A cos(B + C) + 2 cos A cos(B − C) = 2 cos A cos B cosC − 2 cos Asin Bsin C + 2 cos A cos B cosC + 2 cos Asin Bsin C = 4 cos A cos B cosC 5. Solve the equation 4 tan 2 x + 12 sec x + 1 = 0 giving all solutions in degrees, to the nearest degree, in the interval −180° < x < 180°. 4 tan 2 x + 12 sec x + 1 = 0 ( ) 4 sec 2 x − 1 + 12 sec x + 1 = 0 4 sec 2 x + 12 sec x − 3 = 0 −12 ± 144 + 48 8 −12 ± 8 3 sec x = 8 −3 ± 2 3 sec x = 2 2 cos x = −3 ± 2 3 x ±108° sec x = 6. Solve the equation 3 tan θ − sec θ = 1 , giving all solutions in the interval 0° < θ < 360°. 3 tan θ − sec θ = 1 ( 3 sin θ 1 − =1 cosθ cosθ 3 sin θ − 1 =1 cosθ ) 3 sin θ − 1 = ( cosθ ) 2 2 3sin 2 θ − 2 3 sin θ + 1 = cos 2 θ 3sin 2 θ − 2 3 sin θ + 1 = 1 − sin 2 θ 4 sin 2 θ − 2 3 sin θ = 0 ( ) 2 sin θ 2 sin θ − 3 = 0 sin θ = 0 → θ = 0°,180°, 360° 3 → θ = 60°,120° 2 since we squared the equation check all answers sin θ = θ = 0° ,180°, 360° , 60°, 120° 7. Prove the identity sin 3A = 3sin A − 4 sin 3 A . Hence show that sin10° is a root of the equation 8x 3 − 6x + 1 = 0 . sin 30° = sin 3(10°) sin 3A = 3sin A − 4 sin 3 A 1 = sin 2A cos A + cos 2Asin A = 3sin10° − 4 sin 3 10° 2 = 2 sin A cos A cos A + (1 − 2 sin 2 A)sin A Let sin10° = x = 2 sin A cos 2 A + sin A − 2 sin 3 A 1 = 3x − 4x 3 = 2 sin A(1 − sin 2 A) + sin A − 2 sin 3 A 2 3 3 = 2 sin A − 2 sin A + sin A − 2 sin A 1 = 6x − 8x 3 = 3sin A − 4 sin 3 A 8x 3 − 6x + 1 = 0 8. Prove the identity tan θ + cot θ = 2 csc 2θ . Find in radians, all the solutions of the equation tan x + cot x = 8 cos 2x in the interval 0 < x < π . tan θ + cot θ sin θ cosθ = + cosθ sin θ sin 2 θ + cos 2 θ = sin θ cosθ 1 = sin θ cosθ 2 = 2 sin θ cosθ 2 = sin 2θ = 2 csc 2θ tan x + cot x = 8 cos 2x 2 csc 2x = 8 cos 2x 2 = 8 cos 2x sin 2x 2 = 8 sin 2x cos 2x 2 = 4 × 2 sin 2x cos 2x 1 = sin 4x 2 π 5π 13π 17π 4x = , , , 6 6 6 6 π 5π 13π 17π x= , , , 24 24 24 24 9. A triangle has sides of length 2cm, 2cm and 4cm. Find the area of the triangle. Area = 0 since 2+2=4 it is one dimensional 10. Given that a=27m, b=32m and c=30.6m in triangle ABC, find the smallest angle of the triangle, and its area. 32 2 + 30.6 2 − 27 2 0.629 2(32)(30.6) θ 51.0° 1 A = (32)(30.6)sin 51.0° 2 A = 381m 2 cosθ = 11. Solve 2 sin 2 x + 5 cos x + 1 = 0, −π ≤ x ≤ π 2 sin 2 x + 5 cos x + 1 = 0 2(1 − cos 2 x) + 5 cos x + 1 = 0 −2 cos 2 x + 5 cos x + 3 = 0 2 cos 2 x − 5 cos x − 3 = 0 (2 cos x + 1)(cos− 3) = 0 −1 cos x = , cos x = 3 2 2π −2π x= , , ( cos x = 3 → no solution ) 3 3 12. Solve 2 sin 2x = tan x, 0° ≤ x ≤ 180° 2 sin 2x = tan x sin x 4 sin x cos x = cos x 2 4 sin x cos x = sin x ( ) 4 sin x 1 − sin 2 x − sin x = 0 ( ) sin x ( 3 − 4 sin x ) = 0 sin x 4 − 4 sin 2 x − 1 = 0 2 ± 3 2 x = 0°,180°, 60°,120° sin x = 0,sin x = 13. Solve 2 csc x = 5 cot x, 0° ≤ x ≤ 180° 2 csc x = 5 cot x 2 5 cos x = sin x sin x 2 sin x = 5 sin x cos x 2 sin x − 5 sin x cos x = 0 sin x ( 2 − 5 cos x ) = 0 2 5 x = 0°,180°; x 66.4° sin x = 0, cos x = 14. Solve 3cos x = 2 cos 2x, 0° ≤ x ≤ 360° 3cos x = 2 cos 2x 3cos x = 2(2 cos 2 x − 1) 3cos x = 4 cos 2 x − 2 4 cos 2 x − 3cos x − 2 = 0 x 115°, 245° 1 15. Solve sin x + sin 2x = 0, 0 ≤ x ≤ 2π 2 1 sin x + sin 2x = 0 2 sin x + sin x cos x = 0 sin x (1 + cos x ) = 0 sin x = 0, cos x = −1 x = 0, π , 2π 16. Solve 6 cos x − 1 = sec x, 0° ≤ x ≤ 180° 6 cos x − 1 = sec x 1 6 cos x − 1 = cos x 2 6 cos x − cos x − 1 = 0 (2 cos x − 1)(3cos x + 1) = 0 1 −1 cos x = , cos x = 2 3 x = 60°, x 109° 17. Solve tan 2 x + 3sec x = 0, 0 ≤ x ≤ 2π tan 2 x + 3sec x = 0 (sec 2 ) x − 1 + 3sec x = 0 sec 2 x + 3sec x − 1 = 0 1 + 3cos x − cos 2 x = 0 cos 2 x − 3cos x − 1 = 0 x 1.88, 4.40 18. Solve 6 tan 2 x = 4 sin 2 x + 1, 0° ≤ x ≤ 360° 6 tan 2 x = 4 sin 2 x + 1 6 sin 2 x = 4 sin 2 x + 1 2 cos x 6 sin 2 x = 4 sin 2 x + 1 1 − sin 2 x ( )( ) 6 sin x = 4 sin x + 1 − 4 sin x − sin 2 x 2 2 4 4 sin 4 x + 3sin 2 x − 1 = 0 ( 4 sin 2 )( ) x − 1 sin 2 x + 1 = 0 1 sin x = ± ,sin x = −1 2 x = 30°,150°, 270° 19. Solve 3cot 2 x + 5 csc x + 1 = 0, 0 ≤ x ≤ 2π 3cot 2 x + 5 csc x + 1 = 0 3cos 2 x 5 + +1= 0 2 sin x sin x 3(1 − sin 2 x) + 5 sin x + sin 2 x = 0 −2 sin 2 x + 5 sin x + 3 = 0 2 sin 2 x − 5 sin x − 3 = 0 (2 sin x + 1)(sin x − 3) = 0 −1 sin x = ,sin x = 3 2 7π 11π x= , , ( sin x = 3 → no solution ) 6 6 20. Solve csc x = 3 sec 2 x, 0 ≤ x ≤ π csc x = 3 sec 2 x 1 3 = sin x cos 2 x 1 − sin 2 x = 3 sin x sin 2 x + 3 sin x − 1 = 0 No solution within domain 21. Solve sec 4 x + 2 = 6 tan 2 x, 0° ≤ x ≤ 180° sec 4 x + 2 = 6 tan 2 x ( ) sec 4 x + 2 = 6 sec 2 x − 1 sec 4 x − 6 sec 2 x + 8 = 0 (sec 2 )( ) x − 4 sec 2 x − 2 = 0 sec x = ±2,sec x = 2 1 1 cos x = ± , cos = 2 2 x = 60°,120°, 45° 22. Solve cos 2x cos x = sin 2x sin x, −180° ≤ x ≤ 180° cos 2x cos x = sin 2x sin x ( 2 cos x − 1) cos x = 2 sin x cos x ( 2 cos x − 1) cos x = 2 (1 − cos x ) cos x ( 2 cos x − 1) cos x − 2 (1 − cos x ) cos x = 0 cos x ( 2 cos x − 1 − 2 + 2 cos x ) = 0 cos x ( 4 cos x − 3) = 0 2 2 2 2 2 2 2 2 3 2 x = 90°, −90°, ±30°, ±150° cos x = 0, cos x = ± 2
© Copyright 2026 Paperzz