C H A P T E R 12 THE GASEOUS STATE OF MATTER SOLUTIONS TO REVIEW QUESTIONS 1. In Figure 12.1, color is the evidence of diffusion; bromine is colored and air is colorless. If hydrogen and oxygen had been the two gases, this would not work because both gases are colorless. Two ways could be used to show the diffusion. The change of density would be one method. Before diffusion the gas in the flask containing hydrogen would be much less dense. After diffusion, the gas densities in both flasks would be equal. A second method would require the introduction of spark gaps into both flasks. Before diffusion, neither gas would show a reaction when sparked. After diffusion, the gases in both flasks would explode because of the mixture of hydrogen and oxygen. 2. The pressure of a gas is the force that gas particles exert on the walls of a container. It depends on the temperature, the number of molecules of the gas and the volume of the container. 3. The air pressure inside the balloon is greater than the air pressure outside the balloon. The pressure inside must equal the sum of the outside air pressure plus the pressure exerted by the stretched rubber of the balloon. 4. The major components of dry air are nitrogen and oxygen. 5. 1 torr ¼ 1 mm Hg 6. The molecules of H2 at 100 C are moving faster. Temperature is a measure of average kinetic energy. At higher temperatures, the molecules will have more kinetic energy. 7. 1 atm corresponds to 4 L. 8. The pressure times the volume at any point on the curve is equal to the same value. This is an inverse relationship as is Boyle’s law. (PV ¼ k) 9. If T2 < T1, the volume of the cylinder would decrease (the piston would move downward). 10. The pressure inside the bottle is less than atmospheric pressure. We come to this conclusion because the water inside the bottle is higher than the water in the trough (outside the bottle). 11. The density of air is 1.29 g/L. Any gas listed below air in Table 12.3 has a density greater than air. For example: O2, H2S, HCl, F2, CO2. - 124 - - Chapter 12 12. Basic assumptions of Kinetic Molecular Theory include: (a) Gases consist of tiny particles. (b) The distance between particles is great compared to the size of the particles. (c) Gas particles move in straight lines. They collide with one another and with the walls of the container with no loss of energy. (d) Gas particles have no attraction for each other. (e) The average kinetic energy of all gases is the same at any given temperature. It varies directly with temperature. 13. The order of increasing molecular velocities is the order of decreasing molar masses. increasing molecular velocity ! Rn; F2 ; N2 CH4 ; He; H2 ! decreasing molar mass At the same temperature the kinetic energies of the gases are the same and equal to ½ mv2 . For the kinetic energies to be the same, the velocities must increase as the molar masses decrease. 14. Average kinetic energies of all these gases are the same, since the gases are all at the same temperature. 15. Gases are described by the following parameters: (c) temperature (a) pressure (b) volume (d) number of moles 16. An ideal gas is one which follows the described gas laws at all P, V and T and whose behavior is described exactly by the Kinetic Molecular Theory. 17. Boyle’s law: P1 V1 ¼ P2 V2 , ideal gas equation: PV ¼ nRT If you have an equal number of moles of two gases at the same temperature the right side of the ideal gas equation will be the same for both gases. You can then set PV for the first gas equal to PV for the second gas (Boyle’s law) because the right side of both equations will cancel. 18. Charles’ law: V1 =T1 ¼ V2 =T2 , ideal gas equation: PV ¼ nRT Rearrange the ideal gas equation to: V=T ¼ nR=P If you have an equal number of moles of two gases at the same pressure the right side of the rearranged ideal gas equation will be the same for both. You can set V=T for the first gas equal to V=T for the second gas (Charles’ law) because the right side of both equations will cancel. 19. A gas is least likely to behave ideally at low temperatures. Under this condition, the velocities of the molecules decrease and attractive forces between the molecules begin to play a significant role. 20. A gas is least likely to behave ideally at high pressures. Under this condition, the molecules are forced close enough to each other so that their volume is no longer small compared to the volume of the container. Attractive forces may also occur here and sooner or later, the gas will liquefy. - 125 - - Chapter 12 21. Equal volumes of H2 and O2 at the same T and P: (a) have equal number of molecules (Avogadro’s law) (b) mass O2 ¼ 16 times mass of H2 (c) moles O2 ¼ moles H2 (d) average kinetic energies are the same (T same) (e) rate H2 ¼ 4 times the rate of O2 (Graham’s Law of Effusion) (f) density O2 ¼ 16 times the density of H2 mass O2 mass H2 density H2 ¼ density O2 ¼ volume O2 volume H2 volume O2 ¼ volume H2 mass O2 mass H2 mass O2 ðdensity H2 Þ density O2 ¼ density O2 density H2 mass H2 32 density O2 ¼ ðdensity H2 Þ ¼ 16 ðdensity H2 Þ 2 22. Behavior of gases as described by the Kinetic Molecular Theory. (a) Boyle’s law. Boyle’s law states that the volume of a fixed mass of gas is inversely proportional to the pressure, at constant temperature. The Kinetic Molecular Theory assumes the volume occupied by gases is mostly empty space. Decreasing the volume of a gas by compressing it, increases the concentration of gas molecules, resulting in more collisions of the molecules and thus increased pressure upon the walls of the container. (b) Charles’ law. Charles’ law states that the volume of a fixed mass of gas is directly proportional to the absolute temperature, at constant pressure. According to Kinetic Molecular Theory, the kinetic energies of gas molecules are proportional to the absolute temperature. Increasing the temperature of a gas causes the molecules to move faster, and in order for the pressure not to increase, the volume of the gas must increase. (c) Dalton’s law. Dalton’s law states that the pressure of a mixture of gases is the sum of the pressures exerted by the individual gases. According to the Kinetic Molecular Theory, there are no attractive forces between gas molecules; therefore, in a mixture of gases, each gas acts independently and the total pressure exerted will be the sum of the pressures exerted by the individual gases. 23. N2 ðgÞ þ O2 ðgÞ ! 2 NOðgÞ 1 vol þ 1 vol ! 2 vol According to Avogadro’s Law, equal volumes of nitrogen and oxygen at the same temperature and pressure contain the same number of molecules. In the reaction, nitrogen and oxygen molecules react in a 1:1 ratio. Since two volumes of nitrogen monoxide are produced, one molecule of nitrogen and one molecule of oxygen must produce two molecules of nitrogen monoxide. Therefore each nitrogen and oxygen molecule must be made up of two atoms (diatomic). 24. We refer gases to STP because some reference point is needed to relate volume to moles. A temperature and pressure must be specified to determine the moles of gas in a given volume, and 0 C and 760 torr are convenient reference points. - 126 - - Chapter 12 25. Conversion of oxygen to ozone is an endothermic reaction. Evidence for this statement is that energy (286 kJ=3 mol O2) is required to convert O2 to O3. 26. Chlorofluorocarbons, (Freons, CC13F, and CCl2F2), are responsible for damaging the ozone layer. When these compounds are carried up to the stratosphere (the outer part of the atmosphere) they absorb ultraviolet radiation and produce chlorine free radicals that react with ozone (O3) and destroy it. 27. Heating a mole of N2 gas at constant pressure has the following effects: (a) Density will decrease. Heating the gas at constant pressure will increase its volume. The mass does not change, so the increased volume results in a lower density. (b) Mass does not change. Heating a substance does not change its mass. (c) Average kinetic energy of the molecules increases. This is a basic assumption of the Kinetic Molecular Theory. (d) Average velocity of the molecules will increase. Increasing the temperature increases the average kinetic energies of the molecules; hence, the average velocity of the molecules will increase also. (e) Number of N2 molecules remains unchanged. Heating does not alter the number of molecules present, except if extremely high temperatures were attained. Then, the N2 molecules might dissociate into N atoms resulting in fewer N2 molecules. 28. Oxygen atom ¼ O Oxygen molecule ¼ O2 An oxygen molecule contains 16 electrons. Ozone molecule ¼ O3 - 127 - - Chapter 12 SOLUTIONS TO EXERCISES 1. Pressure conversions: a. b. c. (a) (b) (c) torr inches Hg 768 752 745 30.2 29.6 29.3 kilopascals 102 100 99.3 760 torr ¼ 768 torr in: Hg ! torr ð30:2 in: HgÞ 29:9 in: Hg 101:325 kPa in: Hg ! kPa ð30:2 in: HgÞ ¼ 102 kPa 29:9 in: Hg 29:9 in: Hg torr ! in: Hg ð752 torrÞ ¼ 29:6 in: Hg 760 torr 101:325 kPa torr ! kPa ð752 torrÞ ¼ 100 kPa 760 torr 760 torr kPa ! torr ð99:3 kPaÞ ¼ 745 torr 101:325 kPa 29:9 in: Hg kPa ! in: Hg ð99:3 kPaÞ ¼ 29:3 in: Hg 101:325 kPa 2. Pressure conversions: a. b. c. (a) (b) (c) mm Hg lb/in.2 atmospheres 789 1700 1100 15.3 32 21 1.04 2.2 1.4 14:7 lb=in:2 ¼ 15:3 lb=in:2 mm Hg ! lb=in ð789 mm HgÞ 760 mm Hg 1 atm mm Hg ! atm ð789 mm HgÞ ¼ 1:04 atm 760 mm Hg 760 mm Hg ¼ 1700 mm Hg lb=in:2 ! mm Hg ð32 lb=in:2 Þ 14:7 lb=in:2 1 atm 2 2 lb=in: ! atm ð32 lb=in: Þ ¼ 2:2 atm 14:7 lb=in:2 760 mm Hg atm ! mm Hg ð1:4 atmÞ ¼ 1100 mm Hg 1 atm 14:7 lb=in:2 2 ¼ 21 lb=in:2 atm ! lb=in: ð1:4 atmÞ 1 atm 2 - 128 - - Chapter 12 3. (a) (b) (c) (d) 1 atm ð28 mm HgÞ ¼ 0:037 atm 760 mm Hg 1 atm ð6000 cm HgÞ ¼ 78:95 atm 76 cm Hg 1 atm ð795 torrÞ ¼ 1:05 atm 760 torr 1 atm ð5:00 kPaÞ ¼ 0:0493 atm 101:325 kPa 4. (a) (b) (c) (d) 1 atm ¼ 0:082 atm ð62 mm HgÞ 760 mm Hg 1 atm ð4250 cm HgÞ ¼ 55:92 atm 76 cm Hg 1 atm ð225 torrÞ ¼ 0:296 atm 760 torr 1 atm ð0:67 kPaÞ ¼ 0:0066 atm 101:325 kPa 5. P1 V1 ¼ P2 V2 or V2 ¼ P 1 V1 . Change 625 torr to atmospheres and mm Hg. P2 (a) ð625 torrÞð1 atm=760 torrÞð525 mLÞ ¼ 288 mL 1:5 atm (b) ð625 torrÞð1 atm Hg=1 torrÞð525 mLÞ ¼ 721 mL 455 mm Hg 6. P1 V1 ¼ P2 V2 (a) (b) or V2 ¼ P 1 V1 . Change 722 torr Hg to atmospheres and mm Hg. P2 ð722 torrÞð1 atm=760 torrÞð635 mLÞ ¼ 241 mL 2:5 atm ð722 torrÞð1 atm Hg=1 torrÞð635 mLÞ ¼ 577 mL 795 mm Hg 7. P2 ¼ P 1 V1 V2 ð0:75 atmÞð521 mLÞ ¼ 0:50 atm 776 mL 8. P2 ¼ P 1 V1 V2 ð1:7 atmÞð225 mLÞ ¼ 3:3 atm 115 mL - 129 - - Chapter 12 - 9. V1 V2 ¼ T1 T2 (a) (b) (c) 10. (b) (c) V2 ¼ V1 T 2 ; Temperatures must be in Kelvin ( C þ 273) T1 ð125 mLÞð268 KÞ ¼ 114 mL 294 K ð125 mLÞð308 KÞ ¼ 131 mL 294 K ð125 mLÞð1095 KÞ ¼ 466 mL 294 K V1 V2 ¼ T1 T2 (a) or or V2 ¼ V1 T 2 ; Temperatures must be in Kelvin ( C þ 273) T1 ð575 mLÞð298 KÞ ¼ 691 mL 248 K ð575 mLÞð273 KÞ ¼ 633 mL ð32 F ¼ 0 C ¼ 273 KÞ 248 K ð575 mLÞð318 KÞ ¼ 737 mL 248 K 11. Use the combined gas laws V2 ¼ P1 V1 P2 V2 ¼ T1 T2 or V2 ¼ P 1 V1 T 2 P2 T1 P1 V1 P2 V2 ¼ T1 T2 or V2 ¼ P1 V1 T2 P2 T1 ð0:950 atmÞð1400: LÞð275 KÞ ¼ 2:4 105 L ð4:0 torrÞð1 atm=760 torrÞð291 KÞ 14. Use the combined gas law V2 ¼ P 1 V1 T 2 P2 T1 ð678 torrÞð25:6 LÞð308 KÞ ¼ 30:8 L ð595 torrÞð292 KÞ 13. Use the combined gas law V2 ¼ or V2 ¼ ð0:75 atmÞð1025 mLÞð308 KÞ ¼ 544 mL ð1:25 atmÞð348 KÞ 12. Use the combined gas laws V2 ¼ P1 V1 P2 V2 ¼ T1 T2 P1 V1 P2 V2 ¼ T1 T2 or V2 ¼ ð2:50 atmÞð22:4 LÞð268 KÞ ¼ 33:4 L ð1:50 atmÞð300: KÞ - 130 - P1 V1 T2 P2 T1 - Chapter 12 - 15. Use the combined gas law P 1 V1 P 2 V2 ¼ T1 T2 or P2 ¼ P 1 V1 T 2 V2 T1 or T2 ¼ P 2 V2 T 1 P1 V1 ð1:0 atmÞð775 mLÞð298 KÞ ¼ 1:4 atm ð615 mLÞð273 KÞ 16. Use the combined gas law P 1 V1 P 2 V2 ¼ T1 T2 Change 765 torr to atmospheres. ð765 torrÞð1 atm=760 torrÞð1:5 LÞð292 KÞ ¼ 120 K ð120 K 273Þ; K ¼ 153 C ð1:5 atmÞð2:5 LÞ 17. Ptotal ¼ PO2 þ PH2 O vapor ¼ 772 torr PH2 O vapor ¼ 21:2 torr PO2 ¼ 772 torr 21:2 torr ¼ 751 torr 18. Ptotal ¼ PCH4 þ PH2 O vapor ¼ 749 mm Hg PH2 O ¼ 30:0 torr ¼ 30:0 mm Hg PCH4 ¼ 749 mm Hg 30:0 mm Hg ¼ 719 mm Hg 19. Ptotal ¼ PN2 þ PH2 þ PO2 ¼ 200: torr þ 600: torr þ 300: torr ¼ 1100: torr ¼ 1:100 103 torr 20. Ptotal ¼ PH2 þ PN2 þ PO2 ¼ 325 torr þ 475 torr þ 650: torr ¼ 1450: torr ¼ 1:450 103 torr 21. Ptotal ¼ PCH4 þ PH2 O vapor (Solubility of methane is being ignored.) PH2 O vapor ¼ 23:8 torr PCH4 ¼ 720: torr 23:8 torr ¼ 696 torr To calculate the volume of dry methane, note that the temperature is constant, so P1 V1 ¼ P2 V2 can be used. V2 ¼ 22. P1 V1 ð696 torrÞð2:50 LÞ ¼ ¼ 2:29 L P2 ð760: torrÞ Ptotal ¼ PC3 H8 þ PH2 O vapor C3 H8 in propane PH2 O vapor ¼ 20:5 torr PC3 H8 ¼ 745 torr 20:5 torr ¼ 725 torr - 131 - - Chapter 12 To calculate the volume of dry propane, note that the temperature is constant, so P1 V1 ¼ P2 V2 can be used. V2 ¼ P1 V1 ð725 torrÞð1:25 LÞ ¼ ¼ 1:19 L C3 H8 ð760: torrÞ P2 23. 1 mol of a gas occupies 22.4 L at STP 1 mol ð1:75 LÞ ¼ 0:0781 mol O2 22:4 L 1 mol 24. ð3:50 LÞ ¼ 0:156 mol N2 22:4 L 22:4 L 25. (a) 6:02 1023 molecules ¼ 22:4 L CO2 23 molecules 6:02 10 22:4 L (b) ð2:5 molÞ ¼ 56 L CH4 mol 22:4 L (c) ð12:5 gÞ ¼ 8:75 L O2 32:00 g 22:4 L 24 26. (a) 1:80 10 molecules ¼ 67:0 L SO3 6:02 1023 molecules 22:4 L (b) ð7:5 molÞ ¼ 170 L C2 H6 mol 22:4 L (c) ð25:2 gÞ ¼ 7:96 L Cl2 70:90 g 27. ð725 mLÞ 28. ð945 mLÞ 1L 1000 mL 1L 1000 mL 1 mol 22:4 L 1 mol 22:4 L 17:03 g mol 42:08 g mol ¼ 0:551 g NH3 ¼ 1:78 g C3 H6 1 mol 22:4 L 29. ð1025 molecules CO2 Þ ¼ 3:813 1020 L CO2 mol 6:022 1023 molecules 1 mol 30. ð10:5 L CO2 Þ 22:4 L 6:022 1023 molecules ¼ 2:82 1023 molecules CO2 mol 31. density of Cl2 gas ¼ 3:17 g=L (from table 12.3) 1L ð10:0 gÞ ¼ 3:15 L 3:17 g 32. density of CH4 gas ¼ 0:716 g=L (from table 12.3) ð3:0 LÞð0:716 g=LÞ ¼ 2:1 g CH4 - 132 - - Chapter 12 33. (a) (b) (c) (d) 34. (a) (b) (c) (d) 35. (a) Density of Gases 4:003 g He 1 mol ¼ 0:179 g=L He d¼ mol 22:4 L 20:01 g HF 1 mol d¼ ¼ 0:893 g=L HF mol 22:4 L 42:08 g C3 H6 1 mol d¼ ¼ 1:89 g=L C3 H6 mol 22:4 L 120:9 g CCl2 F2 1 mol d¼ ¼ 5:40 g=L CCl2 F2 mol 22:4 L 222 g Rn 1 mol d¼ ¼ 9:91 g=L Rn mol 22:4 L 46:01 g NO2 1 mol d¼ ¼ 2:054 g=L NO2 mol 22:4 L 80:07 g SO3 1 mol ¼ 3:575 g=L SO3 mol 22:4 L 28:05 g C2 H4 1 mol ¼ 1:252 g=L C2 H4 mol 22:4 L Assume 1.00 mol of NH3 and determine the volume using the ideal gas equation, PV ¼ nRT. nRT ð1:00 mol NH3 Þð0:0821 L atm=mol KÞð298 KÞ ¼ ¼ 20: L at 25 C and 1:2 atm P 1:2 atm 17:03 g d¼ ¼ 0:85 g=L NH3 20: L V¼ (b) Assume 1.00 mol of Ar and determine the volume using the ideal gas equation, PV ¼ nRT. nRT ð1:00 mol ArÞð0:0821 L atm=mol KÞð348 KÞ ¼ ¼ 29:1 L Ar at 75 C and 745 torr 745 torr P torr 760 39:95 g atm ¼ 1:37 g=L Ar d¼ 29:1 L V¼ 36. (a) Assume 1.00 mol C2H4 and determine the volume using the ideal gas equation, PV ¼ nRT. nRT ð1:00 mol C2 H4 Þð0:0821 L atm=mol KÞð305 KÞ ¼ ¼ 33 L C2 H4 at 32 C and 0:75 atm P 0:75 atm 28:05 g d¼ ¼ 0:85 g=L C2 H4 33 L Assume 1.00 mol of He and determine the volume using the ideal gas equation, PV ¼ nRT. V¼ (b) nRT ð1:00 mol HeÞð0:0821 L atm=mol KÞð330: KÞ ¼ 26:0 L He at 57 C and 791 torr ¼ 791 torr P torr 4:003 g d¼ ¼ 0:154 g=L He 760 atm 26:0 L V¼ - 133 - - Chapter 12 - 37. PV ¼ nRT V ¼ nRT P V¼ 38. PV ¼ nRT V ¼ nRT P V¼ 39. PV ¼ nRT V ¼ RV RT n¼ ð75 mol NH3 Þð0:0821 L atm=mol KÞð295 KÞ ¼ 1:9 103 L NH3 729 torr torr 760 atm ð105 mol CH4 Þð0:0821 L atm=mol KÞð312 KÞ ¼ 1:8 103 L CH4 1:5 atm ð1:2 atmÞð5:25 LÞ ¼ 0:26 mol O2 ð0:0821 L atm=mol KÞð299 KÞ 0 40. PV ¼ nRT n ¼ PV RT 1 B752 torrC @ torrAð9:55 LÞ 760 atm ¼ 0:362 mol CO2 n¼ ð0:0821 L atm=mol KÞð318 KÞ 0 41. PV ¼ nRT T ¼ PV nR B732 torrC @ torrAð645 LÞ 760 atm ¼ 300: K T¼ ð25:2 molÞð0:0821 L atm=mol KÞ 0 42. PV ¼ nRT T ¼ PV nR 1 1 B675 torrC @ torrAð725 LÞ 760 atm ¼ 209 K T¼ ð37:5 molÞð0:0821 L atm=mol KÞ 43. The balanced equation is ZnðsÞ þ H2 SO4 ðaqÞ ! H2 ðgÞ þ ZnSO4 ðaqÞ 1 mol 1 mol H2 22:4 L 1000 mL (a) ð52:7 g ZnÞ ¼ 1:81 104 mL H2 65:39 g 1 mol Zn mol 1L 1L 1 mol 1 mol H2 SO4 ¼ 0:0234 mol H2 SO4 (b) ð525 mL H2 Þ 1 mol H2 1000 mL 22:4 L 44. The balanced equation is 2 H2 O2 ðaqÞ ! 2 H2OðlÞ þ O2 ðgÞ 1 mol 1 mol O2 22:4 L 1000 mL (a) ð50:0 g H2 O2 Þ ¼ 1:65 104 mL O2 34:02 g 2 mol H2 O2 mol 1L 1L 1 mol 2 mol H2 O2 ¼ 0:0201 mol H2 O2 (b) ð225 mL O2 Þ 1 mol O2 1000 mL 22:4 L - 134 - - Chapter 12 45. The balanced equation is 4 NH3 ðgÞ þ 5 O2 ðgÞ ! 4 NOðgÞ þ 6 H2 OðgÞ Remember that volume–volume relationships are the same as mole–mole relationships when dealing with gases at the same T and P. 5 L O2 ¼ 3:1 L O2 (a) ð2:5 L NH3 Þ 4 L NH3 6 L H2 O 1 mol 18:02 g (b) ð25 L NH3 Þ ¼ 30: g H2 O 4 L NH3 22:4 L 1 mol (c) Limiting reactant problem. 4 L NO ¼ 20: L NO ð25 L O2 Þ 5 L O2 4 L NO ¼ 25 L NO ð25 L NH3 Þ 4 L NH3 Oxygen is the limiting reactant. 20. L NO us formed. 46. The balanced equation is C3 HgðgÞ þ 5 O2 ðgÞ ! 3 CO2 ðgÞ þ 4 H2 OðgÞ Remember that volume–volume relationships are the same as mole–mole relationships when dealing with gases at the same T and P. 5 L O2 (a) ð7:2 L C3 H8 Þ ¼ 36 L O2 1 L C3 H8 3 L CO2 1 mol 44:01 g (b) ð35 L C3 H8 Þ ¼ 210 g CO2 1 L C3 H8 22:4 L 1 mol (c) Limiting reactant problem. 4 L H2 O ¼ 60: L H2 O ð15 L C3 H8 Þ 1 L C3 H8 4 L H2 O ¼ 12 L H2 O ð15 L O2 Þ 5 L O2 Oxygen is the limiting reactant. 12 L H2O is formed. 47. The balanced equation is 2 KClO3 ðsÞ ! 2 KClðsÞ þ 3 O2 ðgÞ 1000 g 1 mol 3 mol O2 22:4 L ð0:525 kg KClÞ ¼ 237 L O2 1 kg 74:55 g 2 mol KCl 1 mol 48. The balanced equation is C6 H12 O6 ðsÞ þ 6 O2 ðgÞ ! 6 CO2 ðgÞ þ 6 H2 Oðl Þ 1000 g 1 mol 6 mol CO2 22:4 L ð1:50 kg C6 H12 O6 Þ ¼ 1:12 103 L CO2 1 kg 180:2 g 1 mol C6 H12 O6 1 mol 49. Like any other gas, water in the gaseous state occupies a much larger volume than in the liquid state. 50. During the winter the air in a car’s tires is colder, the molecules move slower and the pressure decreases. In order to keep the pressure at the manufacturer’s recommended psi air needs to be added to the tire. The opposite is true during the summer. - 135 - - Chapter 12 51. (a) (b) (c) (d) the pressure will be cut in half the pressure will double the pressure will be cut in half the pressure will increase to 3.7 atm or 2836 torr nRT V ð1:5 molÞð0:0821 L atm=mol KÞð303 KÞ P¼ ¼ 3:7 atm 10: L 760 torr P ¼ 3:7 atm ¼ 2:8 103 torr 1 atm PV ¼ nRT P ¼ 52. (a) (c) P T V (b) P (d) T n V V 53. The can is a sealed unit and very likely still contains some of the aerosol. As the can is heated, pressure builds up in it eventually causing the can to explode and rupture with possible harm from flying debris. 54. One mole of an ideal gas occupies 22.4 liters at standard conditions. (0 C and 1 atm pressure) PV ¼ nRT ð1:00 atmÞðVÞ ¼ ð1:00 molÞð0:0821 L atm=mol KÞð273 KÞ V ¼ 22:4 L 55. Solve for volume using PV ¼ nRT (a) (b) V¼ ð0:2 mol Cl2 Þð0:0821 L atm=mol KÞð321 KÞ ¼ 5 L Cl2 ð80 cm=76 cmÞ atm 1 mol 0:0821 L atm ð4:2 g NH3 Þ ð262 KÞ 17:03 g mol K V¼ ¼ 8:2 L NH3 0:65 atm - 136 - - Chapter 12 - (c) 1 mol 0:0821 L atm ð21 g SO3 Þ ð328 KÞ 80:07 g mol K V¼ ¼ 6:5 L SO3 110 kPa kPa 101:3 atm 4.2 g NH3 has the greatest volume 56. Assume 1 mol of each gas (a) SF6 ¼ 146:1 g=mol 146:1 g 1 mol d¼ ¼ 6:52 g=L SF6 mol 22:4 L (b) Assume 25 C and 1 atm pressure 298 K Vðat 25 CÞ ¼ ð22:4 LÞ ¼ 24:5 L 273 K C2 H6 ¼ 30:07 g=mol 30:07 g 1 mol ¼ 1:23 g=L C2 H6 d¼ mol 24:5 L (c) He at 80 C and 2.15 atm ð1 molÞð0:0821 L atm=mol KÞð193 KÞ ¼ 7:37 L 2:15 atm 4:003 g 1 mol d¼ ¼ 0:543 g=L He mol 7:37 L V¼ SF6 has the greatest density 57. (a) Empirical formula. Assume 100 g starting material 80:0 g C ¼ 6:66 mol C 12:01 g=mol 20:0 g H ¼ 19:8 mol H 1:008 g=mol (b) 6:66 ¼1 6:66 19:8 ¼ 2:97 6:66 Empirical formula ¼ CH3 Empirical mass ¼ 12:01 g þ 3:024 g ¼ 15:03 g=mol 2:01 g 22:4 L Molecular formula: ¼ 30: g=molðmolar massÞ 1:5 L mol 30: g=mol ¼ 2; Molecular formula is C2 H6 15:03 g=mol (c) Valence electrons ¼ 2ð4Þ þ 6 ¼ 14 H H H C C H H H - 137 - - Chapter 12 58. PV ¼ nRT ð790 torrÞð1 atmÞ (a) ð2:0 LÞ ¼ ðnÞð0:0821 L atm=mol KÞð298 KÞ 760 torr n ¼ 0:085 molðtotal molesÞ (b) mol N2 ¼ total moles mol O2 mol CO2 ¼ 0:085 mol 0:65 g O2 0:58 g CO2 32:00 g=mol 44:01 g=mol mol N2 ¼ 0:085 mol 0:020 mol O2 0:013 mol CO2 ¼ 0:052 mol 28:02 g N2 ð0:052 mol N2 Þ ¼ 1:5 g N2 mol (c) 0:020 mol O2 PO2 ¼ ð790 torrÞ ¼ 1:9 102 torr 0:085 mol 0:013 mol CO2 PCO2 ¼ ð790 torrÞ ¼ 1:2 102 torr 0:085 mol 0:051 mol N2 PN2 ¼ ð790 torrÞ ¼ 4:7 102 torr 0:085 mol ! 2 CO2 59. 2 CO þ O2 Calculate the moles of O2 and CO to find the limiting reactant. PV ¼ nRT O2 : ð1:8 atmÞð0:500 L O2 Þ ¼ ðnÞð0:0821 L atm=mol KÞð288 KÞ mol O2 ¼ 0:038 mol 800 mm Hg 1 atm CO : ð0:500 LÞ ¼ ðnÞð0:0821 L atm=mol KÞð333 KÞ 760 mm Hg mol CO ¼ 0:019 mol Limiting reactant is CO 0:0095 mol O2 will react with 0:019 mol CO: 2 mol CO2 22:4 L ¼ 0:43 L CO2 ¼ 430 mL CO2 ð0:019 mol COÞ 2 mol CO mol g 60. PV ¼ nRT or PV ¼ RT molar mass 1:4 g 1000 cm3 ¼ 1:4 103 g=L L cm3 1:4 103 g 9 1:3 10 atm ð1:0 LÞ ¼ ð0:0821 L atm=mol KÞðTÞ 2:0 g=mol T¼ ð1:3 109 atmÞð1:0 LÞð2:0 g=molÞ ¼ 2:3 107 K ð0:0821 L atm=mol KÞð1:4 103 gÞ - 138 - - Chapter 12 61. (a) Assume atmospheric pressure of 14.7 lb=in.2 to begin with. Total pressure in the ball ¼ 14:7 lb=in:2 þ 13 lb=in:2 ¼ 28 lb=in:2 PV ¼ nRT 1 atm 2 ð2:24 LÞ ¼ ðnÞð0:0821 L atm=mol KÞð293 KÞ ð28 lb=in: Þ 14:7 lb=in:2 n ¼ 0.18 mol air (b) (c) mass of air in the ball molar mass of air is about 29 g/mol 29 g m ¼ ð0:18 molÞ ¼ 5:2 g air mol Actually the pressure changes when the temperature changes. Since pressure is directly proportional to moles we can calculate the change in moles required to keep the pressure the same at 30 C as it was at 20 C. PV ¼ nRT 1 atm ð2:24 LÞ ¼ ðnÞð0:0821 L atm=mol KÞð303 KÞ ð28 lb=in:2 Þ 14:7 lb=in:2 n ¼ 0.17 mol of air required to keep the pressure the same at 30 C. 0.01 mol air (0.18 – 0.17) must be allowed to escape from the ball. 29 g ð0:01 mol airÞ ¼ 0:29 g or 0:3 g air must be allowed to escape. mol 62. Use the combined gas laws to calculate the bursting temperature (T2). P 1 V1 P 2 V2 ¼ T1 T2 T2 ¼ P1 ¼ 65 cm P2 ¼ 100 atmð76 atmÞ V1 ¼ 1:75 L T1 ¼ 20 Cð293 KÞ V2 ¼ 2:00 L T2 ¼ T2 P2 V2 T1 ð76 cmÞð2:00 LÞð293 KÞ ¼ ¼ 392 Kð119 CÞ P 1 V1 ð65 cmÞð1:75 LÞ 63. To double the volume of a gas, at constant pressure, the temperature (K) must be doubled. V1 V2 ¼ T1 T2 V1 2 V1 ¼ T1 T2 V2 ¼ 2 V1 T2 ¼ 2 V1 T 1 V1 T2 ¼ 2 T1 T2 ¼ 2ð300: KÞ ¼ 600: K ¼ 327 C 64. V ¼ volume at 22 C and 740 torr 2 V ¼ volume after change in temperatureðP constantÞ V ¼ volume after change in pressureðT constantÞ P 1 V1 Since temperature is constant, P1 V1 ¼ P2 V2 or P2 ¼ V2 2V P2 ¼ ð740 torrÞ ¼ 1:5 103 torr ðpressure to change 2 V to VÞ V - 139 - - Chapter 12 - 65. Volume is constant, so T2 ¼ P1 P2 ¼ T1 T2 or T2 ¼ T1 P2 ; P1 ð500: torrÞð295 KÞ ¼ 211 K ¼ 62 C 700: torr 66. The volume of the tires remains constant (until they burst), so P1 P2 ¼ T1 T2 or T2 ¼ T1 P2 ; P1 71:0 F ¼ 21:7 C ¼ 295 K T2 ¼ ð44 psiÞð295 KÞ ¼ 433 K ¼ 160 C ¼ 320 F 30: psi 67. Use the combined gas laws. P 1 V1 P 2 V2 ¼ T1 T2 P2 ¼ or P2 ¼ P 1 V1 T 2 V2 T1 P1 and T1 are at STP ð1:00 atmÞð800: mLÞð303 KÞ ¼ 3:55 atm ð250: mLÞð273 KÞ 68. Use the combined gas law P1 V1 P2 V2 ¼ T1 T2 or V2 ¼ P1 V1 T2 P2 T1 First calculate the volume at STP. V2 ¼ ð400: torrÞð600: mLÞð273 KÞ ¼ 275 mL ¼ 0:275 L ð760: torrÞð313 KÞ At STP, a mole of any gas has a volume of 22.4 L 1 mol 6:022 1023 molecules ð0:275 LÞ ¼ 7:39 1021 molecules 22:4 L 1 mol Each molecule of N2O contains 3 atoms, so: 3 atoms 21 7:39 10 molecules ¼ 2:22 1022 atoms 1 molecule 69. Pressure varies directly with absolute temperature. P1 P2 ¼ T1 T2 P2 ¼ P1 T2 T1 T1 ¼ 25 C þ 273 ¼ 298 K T2 ¼ 212 F ¼ 100 C ¼ 373 K ð32 lb=in:2 Þð373 KÞ ¼ 40: lb=in:2 298 K At 212 F the tire pressure is 40. lb/in.2 The tire will not burst. P2 ¼ - 140 - - Chapter 12 70. A column of mercury at 1 atm pressure is 760 mm Hg high. The density of mercury is 13.6 times that of water, so a column of water at 1 atm pressure should be 13.6 times as high as that for mercury. ð760 mmÞð13:6Þ ¼ 1:03 104 mmð33:8 ftÞ 71. Use the ideal gas equation PV ¼ nRT n¼ RT PV Change 2:20 103 lb=in:2 to atmosphere 1 atm 3 2 ¼ 150: atm 2:20 10 lb=in: 14:7 lb=in:2 n¼ ð150: atmÞð55 LÞ ¼ 3:3 102 mol O2 0:0821 L atm ð300: KÞ mol K 72. The conversion is: m3 ! cm3 ! mL ! L ! mol 100 cm 3 1 mL 1L 1 mol ð1:00 m3 Þ ¼ 44:6 mol Cl2 1m 1 cm3 1000 mL 22:4 L 73. First calculate the moles of gas and then convert moles to molar mass. 1 mol ð0:560 LÞ ¼ 0:0250 mol 22:4 L 1:08 g ¼ 43:2 g=molðmolar massÞ 0:0250 mol 74. The conversion is: g=L ! g=mol 1:78 g 22:4 L ¼ 39:9 g=molðmolar massÞ L mol 75. PV ¼ nRT nRT ð0:510 molÞð0:0821 L atm=mol KÞð320: KÞ (a) V ¼ ¼ ¼ 8:4 L H2 P 1:6 atm (b) (c) n¼ RV ð0:789 atmÞð16:0 LÞ ¼ ¼ 0:513 mol CH4 RT ð0:0821 L atm=mol KÞð300: KÞ The molar mass for CH4 is 16.04 g=mol ð16:04 g=molÞð0:513 molÞ ¼ 8:23 g CH4 g PV ¼ nRT, but n ¼ where M is the molar mass and g is the grams of the gas. M gRT . To determine density, d ¼ g=V. Thus, PV ¼ M gRT g g PM Solving PV ¼ for produces ¼ . M V V RT g ð4:00 atmÞð44:01 g=molÞ d¼ ¼ ¼ 8:48 g=L CO2 V ð0:0821 L atm=mol KÞ - 141 - - Chapter 12 - (d) Since d ¼ M¼ g PM ¼ from part (c), solve for M (molar mass) V RT dRT ð2:58 g=LÞð0:0821 L atm=mol KÞð300: KÞ ¼ ¼ 63:5 g=mol ðmolar massÞ P 1:00 atm ! C2 H4 F2 ðgÞ 76. C2 H2 ðgÞ þ 2HFðgÞ ! 1:0 mol C2 H4 F2 1:0 mol C2 H2 1 mol C2 H4 F2 ¼ 2:5 mol C2 H4 F2 ð5:0 mol HFÞ 2 mol HF C2H2 is the limiting reactant. 1.0 mol C2H4F2 forms, no moles C2H2 remain. According to the equation, 2.0 mol HF yields 1.0 mol C2H4F2. Therefore, 5:0 mol HF 2:0 mol HF ¼ 3:0 mol HF unreacted The flask contains 1.0 mol C2H4F2 and 3.0 mol HF when the reaction is complete. The flask contains 4.0 mol of gas. P¼ nRT ð4:0 molÞð0:0821 L atm=mol KÞð273 KÞ ¼ ¼ 9:0 atm V 10:0 L 3 mol H2 22:4 L 77. ð8:30 mol AlÞ ¼ 279 L H2 at STP 2 mol Al mol 78. According to Graham’s Law of Effusion, the rates of effusion are inversely proportional to the molar mass. rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi rffiffiffiffiffiffiffiffiffiffiffi rate He molar mass N2 28:02 pffiffiffiffiffiffiffiffiffiffiffi ¼ ¼ ¼ 7:000 ¼ 2:646 molar mass He rate N2 4:003 Helium effuses 2.646 times faster than nitrogen. 79. (a) According to Graham’s Law of Effusion, the rates of effusion are inversely proportional to the molar mass. rffiffiffiffiffiffiffiffiffiffiffi rate He 16:04 pffiffiffiffiffiffiffiffiffiffiffi ¼ ¼ 4:007 ¼ 2:002 rate CH4 4:003 Helium effuses twice as fast as CH4. (b) x ¼ distance He travels 100 x ¼ distance CH4 travels DHe ¼ 2 DCH4 D ¼ distance traveled x ¼ 2ð100 xÞ 3x ¼ 200 x ¼ 66:7 cm The gases meet 66.7 cm from the helium end. - 142 - - Chapter 12 80. Assume 100. g of material to start with. Calculate the empirical formula. 1 mol ð85:7 gÞ ¼ 7:14 mol 12:01 g 1 mol ð14:3 gÞ ¼ 14:2 mol 1:008 g C H 7:14 ¼ 1:00 mol 7:14 14:2 ¼ 1:99 mol 7:14 The empirical formula is CH2. To determine the molecular formula, the molar mass must be known. 2:50 g 22:4 L ¼ 56:0 g=molðmolar massÞ L mol 56:0 The empirical formula mass is 14:0 ¼4 14:0 Therefore, the molecular formula is ðCH2 Þ4 ¼ C4 H8 81. 2 COðgÞ þ O2 ðgÞ ! 2 CO2 ðgÞ ð10:0 mol COÞ 2 mol CO2 2 mol CO Determine the limiting reactant ¼ 10:0 mol CO2 ðfrom COÞ 2 mol CO2 ð8:0 mol O2 Þ ¼ 16 mol CO2 ðfrom O2 Þ 1 mol O2 CO : the limiting reactant, O2 : in excess, 3:0 mol O2 unreacted: (a) 10.0 mol CO react with 5.0 mol O2 10.0 mol CO2 and 3.0 mol O2 are present, no CO will be present. (b) P¼ nRT ð13 molÞð0:0821 L atm=mol KÞð273 KÞ ¼ ¼ 29 atm V 10: L D ! 2 KC1ðsÞ þ 3 O2ðgÞ 82. 2 KClO3 ðsÞ First calculate the moles of O2 produced. Then calculate the grams of KClO3 required to produce the O2. Then calculate the % KC1O3. 1 mol ð0:25 L O2 Þ ¼ 0:011 mol CO2 22:4 L 2 mol KClO3 122:6 g ð0:011 mol O2 Þ ¼ 0:90 g KClO2 in the sample 3 mol O2 mol 0:90 g ð100Þ ¼ 75% KClO3 in the mixture 1:20 g - 143 - - Chapter 12 83. Assume 1.00 L of air. The mass of 1.00 L of air is 1.29 g. P1 V1 P2 V2 ¼ T1 T2 V2 ¼ d¼ P1 V1 T2 ð760 torrÞð1:00 LÞð2:90 KÞ ¼ ¼ 1:8 L P2 T1 ð450 torrÞð273 KÞ m 1:29 g ¼ ¼ 0:72 g=L V 1:8 L 84. Each gas behaves as though it were alone in a 4.0 L system. (a) After expansion: P1 V1 ¼ P2 V2 P1 V1 ð150: torrÞð3:0 LÞ ¼ ¼ 1:1 102 torr V2 4:0 L P1 V1 ð50: torrÞð1:0 LÞ P2 ¼ ¼ ¼ 13 torr V2 4:0 L P2 ¼ For CO2 For H2 (b) 85. Ptotal ¼ PH2 þ PCO2 ¼ 110 torr þ 13 torr ¼ 120 torr ð2 sig: figuresÞ P1 ¼ 40:0 atm P2 ¼ P2 V1 ¼ 50:0 L V2 ¼ 50:0 L T1 ¼ 25 C ¼ 298 K T2 ¼ 25 C þ 152 C ¼ 177 C ¼ 450: K Gas cylinders have constant volume, so pressure varies directly with temperature. P2 ¼ P1 T2 ð40:0 atmÞð450: KÞ ¼ ¼ 60:4 atm T1 298 K 86. You can identify the gas by determining its density. mass of gas ¼ 1:700 g 0:500 g ¼ 1:200 g volume of gas: Charles law problem. Correct volume to 273 K V1 V2 ¼ T1 T2 V2 ¼ V1 T2 ð0:4478 LÞð273 KÞ ¼ ¼ 0:3785 L T1 323 K m 1:200 g ¼ ¼ 3:170 g=L V 0:3785 L gas is chlorine (see Table 12.3) d¼ - 144 -
© Copyright 2026 Paperzz