On Performance Bounds for the Integration
of Elastic and Adaptive Streaming Flows
Thomas Bonald and Alexandre Proutière
France Telecom R&D
38-40 rue du Général Leclerc, 92794 Issy-les-Moulineaux, France
!"#$&%'())* )
ABSTRACT
,)-!./10234567089608!'6:!;%<!>=
-?@6=AB=5!)C6D"E%'F!)&@!GHIF-?KJ
!LNM?08NOPF!)5M?08A)--Q;R(S-(F%T708!
!GH
F-?5!LNM?08A)--UV!HWG6!V!>J
)!&08!>VGR!'7(7)6)YX1*-!)R?Z%T5
RN)(R()![\]=^;_?,-![,`<!^!>(a708!Sb'R-
Rc)(()![?
]=
Z_?
(!Pde!2M?0IJfGH56
gCBY!]-()"(8!KL(hPXi@!P?H0e8L!G
"-%T
)b@%T59'F!);,F-?5!L;-(Rj5)
]=
5?e%k5JfRNRL56Ede-ce-]
2()!)?!]Fg%!L&!--!!GHC&-(jK)e)"()-J
!F!)e!3H8Y!F-!!P%lF!)YM?0/-![BKF-?5!L
M?0:(R!l
+
Categories and Subject Descriptors
m n.o p7qsr.tEuwvxy.zs{w|vxr~}DyRk'Hv?'qlh
Ak-%T
)D%
=F5
General Terms
k"-%T
)
Keywords
>!Jf-G6!)Pi0e3sR'F!)C-(jK)!GHgF-?5!Le-(%'J
_)M?0IJfGHl>=-!!--!>!GHZ
1.
INTRODUCTION
-!>7)-!(Z-?)(QNF((![?!;"s-
_Q1023/)(!>)Ns!L\6!>1=/%A-G6!)
`fB aCLR(]co>nRRhXF,102362
!bL>=S-J
R?@Kb1Fgs-B-!Pde!E
=7(>=7e"!?
]=YP!>j5)>1=B%_!Le!'RC-"G!)P)--
R36J
!L^V)--!L^)(3H&)6-!L^V6JfJf
B RGHYK@>!>JiRG!IRl!)!L5-(Rj5)7S!)!L
-"G!)B))(!L>=]
SIGMETRICS/Performance’04, June 12–16, 2004, New York, NY, USA.
.
!GHbcL7GR!"1=
%P!)?R!!>8!8-%T5!FJ
!L!-*i0eS10eDHS)--B%kM?0Z
B |v?TNkq5|V)--/U*-(F%T"N%D!L!>(B])J
5]@`< L + ;L
!sF?V!]WG6!(a"
de=VR@)(R()"![?Q]=*
_N-![N`T@GH57%
U-(F%T"-?])5]"aN:\GR!'^(!
08!)""5!S-;")!GH?4-%T
)de
(R!U%8UF!)KM?0ZU!>Z(K08!)(
GR!
08!>/-)
U;G&%Z)LF!!/
i0e31=!)?=b"Ic)]-w%gd m k
zvyRx6r.Tw,Eq5|V)--\,*?>Jh!5*-(F%TS%
GR!V-!L/`< L@GH!)AF-?5!L!]WG6!]a"
de=7Re)(()![?7]=7I_?7(!
`<!]w
B!L!l-!L'aISA--!>=bGR!c-![08!)(
)--CZ&5]P%lR(Z)!GH?K08!>!5
5!--!.=/"%TU"5!N-*"-J
)!GH?,-%
)UdeS)">=9-(F%T-^-![S%
F-5!L5M?0YV)"3c=BV--
D02&K^b-!LV(b08!)"
=,G-=,08!>
-)I7&GHs%w)LF!N!
&i0e3
08
GR!'c(Z)6)&Z-?
)--!)?H)"Z8s!LY)(3Hw=ZZ-kLR-J
]Y
F-?5!LKM?08Y!Y5L!GHZ-5c%T¡%C!>J
!>i=.RGH"7F!)5M?08
¢B?0eGH?lGHQ!Z-!5D%T£%
-G6!)*!>s]!!^-5D!>j5)>DV!6-6)b!^()"J
!)PXie!8)-R-=S@
35?)"S)(3HYIL!LDK
F!)5ASF-?5!LSMR0¤;!Z
36!L
?]!>c!L6
)6-< "c
?¥Fc¦))"&@"-%T
)
%F!)8M?08gR2
=A-sP%LZF(G!5!6
\>!GHV)(/)-!Fb!>=!L,*-%'J
(!4%@F-?5!L,M?08 -?5!L,M?08*RQ
)V*.Fd m EJh%!>=E!< kN5!5!)DF!)KM?08
-KeDLe&5Y(5§¨&© ªE=502B5-GH2'F!)
o>R«?f --5!LV%<!>
-!L.%c1023U-)
102
F!)B@F-?5!LZMR086D1=P%sMR0/8K-!KJ
!>=bs)"?b]=D)LF!S!6
E08!&F!)BM?08eF
L?]&]!>1=@%F-?5!L7!)!e-sg%¤"J
)?S(A(7o>«6h
L?NG6(LV%Z!N)(!b
;!S
?b%Y!)!>Y!>s]!!*102SF!)7SF-?KJ
!L;M?08.de
-G6!)b56P
!@-?,,
!!>!
1F
s-.(!L¬%BNXi6"?dw.sK)55-J
)!>=4G6!Q-G6!)c!>S
!b)--=9?!)S
-%
)K-!L*%9)?.
.!,'F!)
;!GH7F-?5!LK-(jK)YdeA]F!;!
e?0:@)(
)?)!i=,!A)--=Q%T@K1023Q*K-(-67
NF!)DbF-?5!LKM?08(®Qde!&]F!*!Y%TY%
6G!7L!GH.5!]>=Q(£R5%e-(j5)E!< @%T)ZcD6@c%eL!LSMR08c(5>=;G!
&0M?08&Z!!>!*SY)?-
XiU!7?k025-!>=,F02A!D]F!,]=.J
>=[!L5ZF])"F!)@MR0IJfGHk=5!)8%CK"10e3N!]J
L(!L.F!)V^!GHSF-?5!LVM?08 )!>_)?>=]
02BG6!8-%
)Yg%TIKi=2%M?0-!L
!'?!)?
!]Fe%k!L@!--!>!GH&7-(jK)B)(()!F!)I!3H&
!F-!!k%F!)2MR0,-![eAF-5!LIM?0^(R!l
?0IJfGHl568?GHc>=b)]>=NN!]-6)?S%
G!L\X1]*-%
) --! ^
&-
-?;D])--7-!L*]Ab-]ZS-!LK!3
08-I)?)!>1=@!k%T!>>=K-?A6=A&=5!)26@k%FJ
!)
M?08bo h
2R!@6-!A%8!A56C?GH5
-?
A))]e%TeI0I=bd m ^)">=
-Re6J
08!6\o P
RhlD-)@%C(D!5!>ZQ@>!A-J
)(37o n
REbc!5)"8%g-"8?G6!Ao l
Rf
FAF!ZU@!6L(!,%I'F!)SQF-?5!L
M?08A))UF=F5c08K!!i=Q!7L!GQNF-?5!L
-(Rj5)
[QB! ¥-\o « Z )!L;?Ch&o>
RBRG
-?08SB6-5B--!>!G6!>1=
%k!IF=F A-(j5)B)"-J
)!F!)A;@-GHKL(R!.%2'F!)D-(j5)@-J
%
)S!9N-)S%c]=95)(!-!3HS5!--!
)]-BbGH]
F-?5!L.-(j5);%
L(!L,
08D!3N)?)!>1=]cdw
c36?08?LA!--@%P7!J
L(!N%wF!)Z
!GH&F-?5!LAMR082!
?!F!)
6=5!)?2-)!D08!>^(£M?0 R-!GD9-J
7Z>=V)6>=QU--?.6
= Z"=."?khCo>
?f
de=(>=RGH/%TN]!'=!F-!?F!)
M?0-![85F-?5!LZMR0(R!C2F-?5!L7-(R%J
_)Y]CCRs)2IF(!!>1=K)!>!lH!h ]Y6Dg%
L!LDM?082
!2_!&RG6!?K
§¨ <© 2-(jK)BH
!e-e;gXi5!e202&%])2(Reb-%T
)
6G!5%8]=K-(j5)Y)(()!F!)2deYF(!!>1=
%
ZF=F %T?08Z!)>=S%' R&%Ec?0e"cb!
w)-!N-)!
XiK8"C-)!l]0eY-]CY-!)Y56%l7-!L
!3^-?^%<!>>=\6=^'F!).!GHNF-?5!LQM?08
!;A-)@%g(A!5!>?&deA!5)"B%25)55N(R
!5!>8!YG?b!S&%T?08!L
-)!CdeZ6-!N%
-7->&5-GH(l(A!5!>&*1023S-)R!c!
-]?b! )!*n )!V@))Ic?
2.
A SINGLE BOTTLENECK LINK
d V-!)Q56Y)-!FN%D,-!L.!>b)?)!>i=!3
e
-?S6=
'F!)7S!GHBF-?5!LAM?08I08!>Y]=
(R@!5!>? )!>_)>=]0e@--57&7!3N)?)!>1=;!
%T!>>=;-R?Ni0e*L!L
M?08&-KY?)(NMR0Y
(R
"` !s$
a #
!&%$'(!&)+*
08(! % ! ) ,UDN%DL!L'F!)^
F-5!LbM?08w-)!GH>=]l!#`"!&% !&)a&c
*
1023SF( + c_FY-]&c-(j5)A--5!Y
"-%T
)Y5-!)CDK-?0/RCY>=-!e%s!
F=F ?)8@Y%PK])--c-!L51023
08!
F(RJi68-"G!)c(R
2.1 Traffic assumptions
OgF!);^F-?5!LVM?085R-!GH*5!6Dk!FJ
-])--S%Z-)!GH;!]-!!-,%*,)R:OgF!)
M?08A?GH5!< !< sk-![A%Y5?\./ % -?5!LSM?08A?GH
!< !h sY(R!b%A5?:
./0) V!3/!S%A!S)?RJ
)!>1=]l
./ ) =N7G6!0e;&75?*]!w-![A%C
F-?5!LZM?0Z6?]7!>e)"-![&!5Y-)&%w]=
8M?0Z2deI0eA_BZF!)ANF-?5!LD-(j5)
!]-!>!&
1 % #
,%
/ %
,)
1 ) #
/ )+2
deZRGH"(l-(Rj5)Z!6-!>1=b!Y?b6= 1 #
1 %$'
1 )
2.2 Performance metrics
3 -"@%Y(b-(F%5!)?R!A!)b6!>1=.%
-G6!)7L*7!5Z)-R-=*K-(F%Tcb])56?
de6I0eZGZB-%T
)Z%gF!)7-(j5)cL
F!)bM?0 L
% P_?9A5(!Q%8
5?SM?0-![K
./0%ZAZ5?SMR0(! 4%R
%5#
/0%4%62
7 =-8l!>-:9 8'0Z0eZ?GH7O8o !&%(&#,%;4%B-@?
% #
1 %
`FRa
O8o !&%( 2
3 -"D%&!V,G6!V!)?R!C,b@s
!)9]!>i=%5-G6!),L!V!F(](
(Pde20e&GR&Y-%
)B%wF-5!L7-(j5)
L^SF-5!LVM?0 L
)C_?^D
5?N!F(6(8(Z)!!?NNc%T)YR8
!YY?F&ZL!LDF-?5!L@M?0Z
) #4O8o
`"!sa< ! )>=
R
2
`f«a
BYC0eB)(]-B5?
-%T
)&5-!)P%TeY3H
%2-!5!)!>1=]DdeKZ"!G?;!Q!Z7-*>=
S_c5-!)c!3H@D!!i=VBD!F(](
(Z!8-8NDL!GHN--cc5B!
?«6 6
2.3 A processor sharing network
deAF=F¦)V@-]?Vcb1023*%Ci0eb)J
?b])--&-!LK6 m F58!Sc66
A @?)--*KA'F!)AMR0808!@)F5Y!*
6I6C BI)--.NF-?5!L.M?08
deS-!G2(RKRK6D
@NE
BSRF
, % E
, ) E-)J
!GH>=] "G!)@?]!>5]cRD!< !< sw%e!>Z5?.RZ?)"
6Cdec-"G!)Z(RZ%E6G
@Z!YL!GH*]=s
H % `"!saI#
! %
/ %
! % '(! )
2
`Ha
de!Y)--&D;FR-Z(5%PF!)AM?08&!
F(J!w !)7@(!V%e5F-?5!L5M?0 !c!J
6P%l!>C!>g(]I-G6!)Y(RY%6>B8!C-!5>=DL!GH
]=s
H ) `"!sa$#K! ) / )
2
`<n]a
de!C)--Pc8-I(RY%sF-?5!LcM?082!
F(L!l
XiKY-)B%F-?5!L
Absence
streaming
-(jK)2of
!D]
!LQF=traffic.
F?)DUV-!LN])--
-R!L7]I56!L!>=5)-!?K]= --!M K
&-Qo
h 3 VF(!!>i=)!>! 1 %ON
BF(!-=S!F-!!N%k&D2%EL!LK'F!)
M?088!Yl
P `"!&%aQ#`FSR
% a U
1 1 %TV *
)--!LKDc'F!)7M?0L?
%5#:5R
`fa
1 % 2
Xf%I!A!--!>!G6!>1=.J
H % `"!aQ#
H ) `"!
#
R % a
H )`"!sa
*
!N
!% =
!&) =
*
*
`a
*
08F!95?D!% % !&) )S !l
`aDR
`a"!l
8F(C%s102QiG6!-7!--!!GHY])--I-!L7-J
0236KR7!5
" !LN6= 5)--!L
)*%T)!2NF(R!R-=/!F-!!5%&*-J
023bF( !w
` -a"
!l
` aeRc-)!GH>=SL!GHN6=s
`"!saC, %TV , )
T *
P `"!sa$#P `a `"!aC, %TV , )
T *
RG!?bc%T?08!L
F(!!>1=S)!>!N
P `Ha
`"!saC, %TV , )
T N"!
`
a
2
H % `"!R# ) a
H % `"!sa
$
>#
H ) `"!R# % a
H ) `"!sa
*
!*
!% =
*
!&) =
2
%5VN10239F(R !w
S
`-aDK\i"U
-!)V!
?
9U-
b6@5%ZL!L9F!)Q
F-5!L
M?08s)--!L
S!L"cG&%PA-J
%
)b5-!) !5!>=]E0e
%T"K%
!w
` a7AbR02
+
H ) `"!saI#
% #:SR
H ) `"!sa
2
1 % *
1 %
R
+
1 %
+,.-
1 )
/
`32U'54a76)2 & 2
,10
!5!'R>=]!>&%R08c%'
!%$'E!&)
`"!saI#98
! %;:
7!B-1=
! )'& / %T V / )T
`Fa
2
de!8)--8,1G6!>-D-G6!)7(R
H %`"!sa$#
H %`"!sa
! )
H )`"!aQ#
!&)C/ )(
6
!&%$'(!&)
H )`"!a
2
B?)8R2BF(!!>i=
)!>!Q`
HaCI!>%w
>=
!>% 1 % N4!N08!)(*)?-
+
`"!saC, %TV , )
T #
SR
T
@%
=?> <
1 %
<
V 2
Xi% 1 % N !>&%T?08c%¬`FRa"k` a"E`FHa8 %
% 08
$
%cIcF!)ZMR04LI%T8c?0e&s
%S#
`FSR 1 % ?a @
R 1 %$' 1 ) 2
)
)RR08A
)PwPF-5!L
!5!>=]R0eP(!
$
M?04LI%TYc?0e&
/
T
N-&-NRK!5)!>!\!5!F_?!>%Z\>=^!>%
%
N4gX1KG6!0%P` Ha"H02B?)IP8!L!F=F !
1
F(B!>%wK>=5!>% 1 % N4
gF-?5!LZ-(j5)&]eeRs)
DF(!!i=Q)!>!lDde!Z!7@bK!GHD
%Ec)-!?NF-?5!LDMR08
+ ?0 !GH55)b%)! Ub)-J
-!LK-%
)Z5-!)8-!LD&%<)"Y8&%T>J
?08!L9i!-5-i=S7`T%Y ! a"
+
@*
` a
SR
)5#
Lower
bound.
R?
!k
`a
`-aO!w`a!w
H % `"!sa
$
U% `f«a"8` a7/` HacR
))
)w08
)K
BF-?5!L@M?04LI%8B/ "8
@"!?9! !> g!--!>!GH
@)?^
!GH?S%B]=S])--c-!L51023bRG6!'?Sc%T>J
?08!LV5!)!>1=.-1=.'
D5RG6!LN*)F5
%':]=Z62]kE)?-2g-G6!)P(2%]=Z
)F5"?7de@5!)!i=;-1=*)?>=VB%c
-"G!)I(R8` Ha"`<nHa" + I?)eREI10237F(5
!k` -a
R&]=
!5
I!F_
P `"!saI#
/ %
08 %
`F Ha5 )
` Ra"BS)?/?-!>=/G!>%=
*
*
e!51)D-i=
!2G!'R?S]=KB-G6!)B(R
` a"P`<n]a" + D?)ZRBAF(!-=Q!F-!!V%C
10239F(RF
!]
9^N!F-!!5%BFJ
!)DM?0 -![5;F-?5!LbM?0 (!lAde6B02K)?
")8!)!>8->I08!>Y
36!LD-)!>_)7--5!
2-(jK)&)(R()!F!)2de!2!P086=D0eY%2A"!G
"-%T
)ZG!
%TB]=
-(jK)Z)"()"!F!)
2.4 Insensitive bounds
`Ha
/ %TV / )
T 2
d 6Z5F=F ?GHAA!>%8?)(,1=5%I-(Rj5)50e
!
e
!-!\!,
--5@F!)b-(j5)
!D@s)"?96=
F-?5!LY-(Rj5)eZF-?5!LI-(j5)C!wEs)7]=Z'FJ
!)c-(j5)
Xi% 1 %>N4H028?)e%' `FRa"` a"` aw %( %08
% PB'F!)BM?0/LC%T2Y"es
!>=KG8IF(R!R-=
!F-!!5%sI1023@F(
3 %->=]RC-)e%F-?5!L&-(Rj5)2?36gR08
!--!>!G6!i=] e"!?b! !> A)--=b)J
!>!N%TB!--!>!G6!i=b!8R?
R ) a
! )'&
de!8)--8,1G6!>-D-G6!)7(R
Presence
"-1=90e"Nof
-streaming
GH?908!>\traffic.
F-?5!LV-(j5)CN)^?FJ
H %`"!sa
`"!saI#
de!kF=F4!P©¨¨(© <© IgF!)PM?0,-![C!F-!!l
H % `"!
3 -!LDc!8-1=]60eZ(!
Upper bound.
) #
@
5R
=B> < <
1 %
R
V
+
1 %
+,.-
/
8
,10
4L'52
2:
1 )
`32 'C4a76D2 ;& 2
e-!5cR02Y5)?ScJ
All
(!traffic
?.]=V)elastic.
-!!LSRAE-(j5)D!7F!)
de!Z)-J
-5,.-!LV])--S-!L9]S08!>/102,)FJ
5"B)--c%P-)"!GA5;-G6!)7?]!>5]Z./ %
Q
./ ) Pde;iG!>-5-G6!)c(YR
H % `"!sa$#
H % `"!sa
H ) `"!saI#
!&)
!&%$'(!&)
/ )
H ) `"!a
2
X1QR-!)?lKQ!Z-Z!L]ZQ5RGHK?0e"
sKXi7!7F(K!>%8.>=.!>% 1 N w!.08!)(U)?-K
F(!-=N!F-!!*!
P `"!saI#
T *
P `Ha `"!saC, %TV , )
08!>
1
Z(!
+
%
% #:5R
%c
$
1 *
) #
! % 'E! )
8
)
! %;:
$
`FSR
/ %TV / )
T 2
)R08!>
1 a`FSR
1 )
Pr[ streaming throughput > 0.1 ]
`"!sa$#
1 % a SR 1 %
5R 1
2
2.5 Numerical example
! LB2)5w2k%6?«6 nBY-!D'R!E%
56C-)!?,! ?"«6508!>96!CF!)
M?0-![
` / % #:RaE@"]!6F-?5!L&M?0/(R!I` / ) #:Ra"
087F-?5!Le-(j5)g-]k2%()! 1 ). 1 # «I%6
2
RGH"(-(j5) + 8-GH82F!)&-(Rj5)Y!2>=D-!L6>=
![?A]=cC-)2%!GHCF-5!L8-(j5)gde!
!CB-!L!_)?]C!>s)208!>DI-)!Z)-!?@!So>
« Z08.F-5!L,-(Rj5).!SL!GH!!>1=F-L>=
![YF!)Z-(jK)
Elatsic flow throughput
1
Upper bound
Simulation
Lower bound
All traffic elastic
0.2
0
0
0.2
0.4
0.6
Elastic traffic load
0.8
1
!Yxyfqyr.wxKqg|vyRx6r.TwNvy"^#fqyZbukk'v
5v
« $
qB |vyx6rUTw,vy"^
T
uwyRx
tkH'v"{
%
0.6
`"!sa$#5!
0.4
* ! % 'E! )
2
3.1 Traffic assumptions
0.2
0
0.2
0.4
0.6
Elastic traffic load
1
Streaming flow throughput
0.4
%
0
0.8
1
0.8
de7-(jK)K--5!cRA@5Dc! ?"«6ZXi;G6!"0
%s8M?0\(R&!5!>?H85?K]!-![&%wcF-5!L
M?0¤!7?0¤?]g
./ )bdeZ0e
"_@KF!)b
F-?5!LD-(jK)Z!]-!>!&
&%
, %
1 % #
Upper bound
Simulation
Lower bound
All traffic elastic
/ %
%
, )
1 ) #
/ )
2
deZRGH"(l-(Rj5)Z!6-!>1=b!8F!w?b6= 1 #
1 % '
?«6 6CbF=F)?9b-]?9K;i0e3
A!O
%Ei0eK)?N])--&-R!LK62deZ)--!L
-G6!)c(BR
0.4
%
6 5!
H %`"!aI#!%M/0% N
0.2
* !&%$'(!&)
0
0.2
0.4
0.6
Elastic traffic load
0.8
H )`"!sa$#K!&)/ )
1
uwyRx
&x6y iqyrQkx¬q
x |v? vyR 9
FuwtwtPx6y
yt Y Q|vyRxrUTwSvyR ^ q@x6ycyt
iqyZbukwv
tkHv({ T 5'v « ¦q Y|vyRx6rUTl9vyR ^
`F?a
2
`FR«a
2
L !l8')8-i=D!2G6!R?K-ZP1023D"-J
%T
)Z!Y--!>!GHcDc!F-!!8%E'F!)7M?0-![
SF-?5!LDMR0(!l
3.3 Insensitive bounds
! L5«KL!G&7->c(!;%&A57-)!
wI!>s]l-%T
)g5-!)g%wF-?5!Le-(Rj5)R5>=
D!!>1=VRc@!F(](Z!>c(RK!Z-c
6 + @-GAY08VRGH(k-(Rj5)A!]-!>1= 1 !c-
N])--!LZ7DF!)Y-(Rj5)8!6-!>1= 1 %>NO 2
Z!F(](8!>I(Z!I(=N-I
875!)!>1=N-1=*N7!c-i=NF!
7%gC-G6!)2(I`FRa"`FR«a"0e2)?@!GHC!--!!GH
l)(R()![7]=&')g%T)! kG
8l" QBcLFc!]LY-)"b 6
!'
(' %
ACCOUNTING FOR RATE LIMITS
`"!sa$#
BL?
+
Upper bound.
3.
1 ) 3.2 A processor sharing network
0.6
0
0.6
+ 5?0".K56P% )!«
V))]7%TK
) 55\(RV!5!>
N
;%T*/F!)U/F-5!L
M?08Y7&-?5%lY-9 8))-I!Y%T8!F()
DF-?5!L*M?08EK(
!5!>@
=U-V-]A
!D (5%CD!]WG6!*)6)5de6&D(RK%
?)"NM?0!8L!GH*]=
Upper bound
Simulation
Lower bound
All traffic elastic
0.8
0.8
!)
&
/ %T V / )T
*),+ ..-0T -0//V5134182 7 V
+ 94
6
0
0
6'
!>%$!&%
-08!-
*
2
de!&)--I,iG!>-5-G6!)c(
%
* ! %
a
H % `"!a~
$
H ) `"!aQ#
H ) `"!a
0.1
2
Elastic flow throughput
6 5!`
H % `"!sa$#K! % / % b
LH!H2"E@)--EZ&F=F08I?)"
i=c%E-(Rj5)Z!Y!S!-!
! % '(! )
`"!saI#
8
/ %TV / )T
! %
:
++ T.V-0+/1T 2 V 1 4
T 4
+ .- /9137 4 2
6
!>%$! % '(! )
!>$
% ! )>=
0
'
0 >
0
-08!-
de!K)--D41G6!>-Q-G6!)S(R H %`"!aD#
H ) "` !s
a H ) "` !sa"608!>l
H )`"!sa$#!)M/0)(6
T TV+
0 T
6'
!>$
% !&%$'(!&)
!>%$! )>=
*
-08!-
'
/ + T V 6T 1
6'
*
0
0
/ )
%
6S5!
H ) `"!a
2
P `a `"!aC, %TV , )T *
08!>
`"!saI#
8
! % '(! )
! %
:
%
/ %TV ` / ) . a
T 6
) + .+ - T/.V1-062 /TV1 7 1 2 4
+ 94
0
0
6'
!>%I! % '(! )
-08!-
2
3.4 Numerical example
! LGD!F-(&&!L]-8%wZI!S)?-7%
S-!L
!3;08!UN)55V(5!5!76E 65%@
M?08 LH!,K-!DR!U-@5(!?U%TAJ
]!kF!)7M?0:-![c*F-?5!L5M?0(R!Y08!
2525?S` /0%5# /0)?a" B-GHCk2kR2J
!GH=@!L]C08DYRGH"(-(jK)Y!]-!i= 1 !2-PN
)--!LcZ@F!)Y-(Rj5)I!]-!>1= 1 %>NO 6 + IJ
2
)Z&-%T
)A!B?!
R>=N!--!>!GHA%&!
(LA%k-(jK)Z
4.
0.4
0.6
Elastic traffic load
0.8
1
0.04
Upper bound
Simulation
Lower bound
All traffic elastic
0.02
0.2
&%
$
uwyRx
Yx6y fqyr.kx q
x |v?TvyR ^ Fuwtktgx6y
yRt 8 U|vyRx6r.TwbvyR ^ q @x6ycyRt
fqycbukk'v
tkH'v"{ 5v 49Eq yRv x <rU'v -# N
« 2
q &|vyRx6rUTl,vyR ^
XfI!eF(c!>%E5>=
!>% 1 N4!
08!)"b)?-&&F(!-=
!F-!!N!
P `"!saI#
1
0.06
0
* ! % 'E! )
0.8
0.08
0
H %`"!sa
%
0.4
0.6
Elastic traffic load
0.1
*
%
H ) `"!sa$#K! )
0.2
H %`"!a
w?02EZ!E(!?Z]=Z)J
All
-!traffic
!L7elastic.
e-(Rj5)B!2'F!) C85?5]!'-![
%F-?5!LcM?08C!P?]
./0)H02Y?)eP51G6!>-J
5-G6!)c(&R
Upper bound
Simulation
Lower bound
All traffic elastic
0.02
2
c!;@-)@%P(D!5!>AF(!!>1=V)!>!\`
a
8!>%PS>=N!>% 1 % N
H %`"!sa$#
0.04
*
2
0.06
Streaming flow throughput
Lower
bound.
?
!5!>=]!>B%?08B%¡7!'&-i=
0.08
*
RG6!C!--!>!GHC-%T
)e7Y)F!>I8L]6@J
?!
!@%-Pf%<!7])!2!3He
6Jf5!Z%<!>-
N-!w%T!>-@o ««?h + c_FY)?w7_!>!
A2
!@"-!E%)?A%T!>-2A@!GH
-%
)ew%:e>=-!E%s&])--P-!L
"10e3
2C6=L@2!>EGH)k08!>b2!A)5J
. k]= !#"
*222*
N6= !$ " 02Z-BZGH)!(R!l
+
Notation.
6GY-08%T#:
%
8
:
%
' &
"
8
0
%
(
)3:
%
* &
& *
"
%+
&
0
%
* &
"
0
%,+ - 2
4.1 Balanced fairness
8l"7
D# ` 0
aPY8i0e35F(]08()w!2
*222* "
6@P%l)-FJkM?08 + &8]=/.#` aE8G((
%g)'-FJ PMR08Y!NF(R gdec(Z)F-(!]&
MULTICLASS EXTENSION
! >=]02B6K&->2@))]e%I8%<)IR
M?08C
=7?GHe!>s]E(I!5!>gP
=@2!5!>?A6=7
))!>1=V%C-GH(E!36 + A)-!'Z
"10e3*
% !36
%&-)!GHN))!>!
0
\-?^]
= )--5%
*222*
M?0Z m '-FJ gM?08eY)(()![?
]=5c(&!5!> k5
_?N
)-!F!LS%C
--&%gA!36c]
2#]
*222*
+ D--57Rc"10e3N-)cD-?V))(!LS
)?%<!>-.o Rh de!N])?R!S-?084
"
I#:
*222*
.#-` a
*
)
%, *
`Fa
/
26#
*222*
*
/'2)3
.#` a
10
7 ')N%<!>-Y"%T8Dc])?!
.#` aI#54
`
4
R
`
a
@ a
*
2
`FnHa
`FRa
08
!E2%)"!@)-!GH>=@_?A]=
4
`
a$#
1 0
4
-
+-
`
4
R@fa
%
R
* & 0 /
`Ha$#:8
4
/
/'2)3
0
-
T -
-
`G
R
4
@ a
d !@!Z5!]D!--!>!GHb])?!-)"QRDRAF
e
N(R;)F-(!]
!SR-(!\!6=^F(RD
# 6 )"
9])?R!\7.)-!?,!UK)6"A%IF!)
-(Rj5)Z>=Uo h
Xi.%R08!L@)-FJ bM?08Q
=.!>V'F!)9
F-5!L + K@]
= !&% AD&%2)-FJ 8F!)
M?08 ! ) eD6D&%2)-FJ &F-5!L
M?08DdeK-J
023.F(
!D?0 ! # "` !&% !)a"k08!>(
!&% #£"` !&% 0
!&% a
"
*
*222*
! ) #"` ! ) 0
! ) a"gdeB(Rc%kSF!)Z)-FJ EM?0
"
*222*
!B@5DBRc%e5F-?5!L
)-FJ IM?0 ;!cL!GH
]=s
-`"!sa$#
.#-`"! % '(! ) a
! % '(! ) +
2
b))bDi0e3U-%T
)S!K--!>!GS;
!F-!!w%'F!)2M?09-![27F-?5!LIM?0^(!
4.4 Insensitive bounds
X1;A%R08!L0eK--57RcA5!)!>1=*J
-i=S + cL!GHc"5I!?n @08c!I"-1=b!
!?.R!F_?s BDRZK!'7"-1=;.%T?08
H % -`"! RC ) a
H % `"!sa
P `"!sa$#
P `a
`"!saC, %T V , )T
%
6
deZ)--!L5)c%T)!
4
`
a$#
'
&
%
+
!>%
6'
* 4
`
aI#
*
Ra
*
m -FJ I'F!)K*F-?5!L
M?08c-!GH@&!]
!--A])--k%]-)!GHC!]-!!, % G, ) F m -FJ
k
'F!)eM?08k?GHP!< !h s-![E%55./ % ( m '-FJlF-?KJ
!L.M?085RGN!< !h se(!5%B5?4
./0) /deN5?
]!w-![7%PD)-FJ 2F-5!LDM?0:!8?] ./ ) (
de6702b_DK)-FJ cF!)bUF-?5!LN-(Rj5)5!J
-!>!B
%
/ % 1 ) #
% 2
,) / ) deZRGH(l)-FJC-(Rj5)Z!6-!>1=b! 1 #
deNF=F )?SG6!02?\5Vi0e39%Z«
)?
])--S-!LU6 m F5K!/6;`@ ia@)-J
*
-K7)-FJ EF!)YM?08]08!B)F5P!
6B` B ia
*
)--A&)-FJ F-?5!LYM?08gdeC-)"!Ge-G6!)
(R&
6
-`"!sa
*
H ) (`"!aI#! ) / ) 2
`Fa
deD)K-1=*cci=A%C-(j5)@!Q@--
?!*G6!"0%I`FRa"k`FHaI.`Fa"
H % "` ! R% a
#
H % `"!sa
R % a
H % "` ! !*
:!&% =
*
H % "` !sa
*
!% =
*
H ) -`"!RC ) a
#
! a
H ) - `"s
08
% R ) 1a
H ) "` ! !N
! ) =
*
H ) "` !sa
! ) *
`@( HaID ) ` @(fa"8!*L(h
*
*
H % "` ! R#) a
H ) `"!RC% a
#:
#
2
H % "` !a
H ) `"!sa
`"!aQ#
`"!aC, %TV , )T N!
*
`F
a
`Fa
2
`"!sa$#
`"!%a
4
! )'&
/ %T V / )T
2
H ) -`"!sa$#
H ) -`"!sa
2
=
*
!5!'R>=]!>&%R08c%'
08"Z?)(N1=
8
! % '(! )
4
!&%;:
7!B-1=
`"! % E
' ! ) a
"` !&)"a
!&)
/ F
%
T V / )T 2
&
4
de!e)--eViG!>-D-G6!)Y( H % `"!aQ#
H ) `"!sa$#
4.3 A processor sharing network
H % -`"!sa$#K! % / % Lower
bound.
R?
1 ) 1 % '
`"!saC, %T V , )T
deZ8S)--85DF=F
%E-(Rj5)Z!8!S!-!
4.2 Traffic assumptions
,% P `"!saI#P `Ha
*
H % (`"!aI#K/ % .#`"! % a
4
6
de!8)--8,1G6!>-D-G6!)7(R
"-08!-
&
3 -!LDc!8-1=]60eZL?
' %9
' &%
08 Q!8B'RLF&!]LY-)"b
1 % 0#
Upper bound.
2
!&) =
T
!
4
*
RG6!?
cF(!!>1=S)!>!*
%
deZ)c%T)! R8)"()"![cc
S?0e&I)?NN-!>=*Z!GH? + c?GH
`FHa
2
-!)'R55b!DV-!LS!>@)?)!>1=,!3U08!>^
) 557(2!5!> 7P)-!?@! )!D6gde!g!5!
ZF(Ji]e(
.&` aI#5!`
H ) "` !R# % 1a
!S
!&% =
*
H ) `"!a
5#
$
.#(`"! % '
! ) ! ) a
. `"!&)a
!&% 'E!&) !&) /0) H % `"!sa
2
3=5->8!IRecF(!/ !>1=S)/'!>2)3 !*]8Y
9F-5!L*-(Rj5)81 % # 10
1 % Y5bRGH"(
F!)Z-(jK)Z!]-!>1=bS!3 2f2dec- ]%g%gde Z!
L!GH*! !> 7 / / © ª/1 % N
C¨Mf§ ©" © "! $#'%© <©"# '&( )*+#:,%¨C© ªP§ -%.# !
ª0#21A§ 0 © 3¨ 254
3 -!LYe5!)!>1=7-i=]02eJ
All
traffic
(!
elastic.
D?0e"5U]=.)-!'!LVRKC-(j5)b!
F!) g85?K]!-![Y%)-FJ wF-?5!LcM?08
!E?]H ./ ) -02I)CRk@1G6!>-&-G6!)2(
H % ("` !saI# H % `"!sa2s
%
H ) -`"!sa$#K! ) /0) %
/
6
`"!a7
/'2
3
H ) -`"!sa
2
XiY!8F(7!>%PS>=N!>%61 0
1 QN
!N08!)(N)?-ZcF(R!R-=;!F-!- !N!
P `"!saI#
T *
P `Ha `"!saC, %TV , )
/
%Tcw!36 i2 2
08!>
1
`"!sa$#
8
`"!&%$'E!)a
4
!&%;:
%
/ %TV ` / ). a
T
2
Elastic flow throughput
! % '(! )
4.5 Numerical examples
C_Fg)-!PB«RJf()(7-Ig!)?
+
Tree
!Lnetwork.
Yn]!K8-)8%s(8!5!>gde8"10e3D)-!F
%7V!36&U-3^%@
"CdeZ->&>=N5cL(>=*
]=5-B1023]08!>NNR!>-(-=
6@C%k@>!!L
F(L )",L!
b()"!)>=^!]F!LQD=
)N-]&))-&10236I087608!N5!L68c
-))Z-)
*
=
0
#
@
4
*
`
a$#
8
&
'5
0
R
0
0
R
@
R
+
:
@ a
'
.#` a
*
0
+
@
' &
-08!-
dlS=N7B!GH*!
!)!>1=S-1=]!< .#(`
@(fa
'
`$
' @ a
+
Streaming flow throughput
0.2
8
!>%
*
0
R
@
#
0
R 'C
0
b
7
'
*
4
`
a
@
4
`$
' @ a
` 'bRa
4
4
`
a
*
b
=
@
*
R
:
`
RL@ a
4
`+
'D@ a
ZRGHBB%T?08!L5->&!
@
*
0.4
2
*
*
*
K§
*
%
=
& ( *
*
2
`f«Ha
`f«]Ra
@
0.2
0.1
0.2
0.4
0.6
Elastic traffic load
0.8
1
Upper bound
Simulation
Lower bound
All traffic elastic
0.4
0.3
0.2
0.1
0
#:,% 4
! LcD K!F-(RZZ!L]-8%PZI%
.«RJf()(^-N%B)?)!>! 0 # * #
]de
@
2
()"DR
?]>=,9sPA!9G6!@5
F-5!LK-(Rj5)Z-6&
« %gZRGH"(l-(Rj5)7!]J
-!>i=]
$
1
0.3
*
# !> m / 7©& § © <© "¨/&
0.8
Upper bound
Simulation
Lower bound
All traffic elastic
0
=
`$
' @ ' @ a
*
4
0.4
0.6
Elastic traffic load
0
*
#
0.2
0.5
XiNG6!0%8`F?a"!8!8?]!G]IDc!?]!>!
4
0.4
0
?(n ns0eANA5J
.#(` a
1
0.6
0.5
.#(`
0.8
Y x6y f qyr.kx q x |v?TvyR^ Fuwtktgx6y
|vyRx6rUw vy"^ q@x6y yRt¬q
*
q&QvyRx6xQwx6v"Aqy # ! # 2 $
Streaming flow throughput
4
=
`
a$#
+
0.8
Elastic flow throughput
+
0.4
0.6
Elastic traffic load
uwyRx
yRt
kyRw
Y!&-!5Z1023
L=]Z%T)!
)(()J
4
"![!LK)?S%<!>-Y!Y"!)!7o Rf
C!>% 0 @
Z6D"e%EM?08YND7;«]-)!GH>=]02ZL
4
0.2
Upper bound
Simulation
Lower bound
All traffic elastic
0
wyk vyRxx 0.2
0
uwyRx
!>%
0.4
1
C1
0.6
0
1
`
aI#
0.8
0
C2
Upper bound
Simulation
Lower bound
All traffic elastic
0
0.2
0.4
0.6
Elastic traffic load
0.8
1
" Y x6y f qyr.kx q x |v?TvyR^ Fuwtktgx6y
|vyRx6rUw vy"^ q@x6y yRt¬q
Q
q&QvyRx6xQwx6v"Aqy # ! # 2 $
uwyRx
yRt
kyRw
0
@
;?0¡)-!S;)?-Q%@,-!L
0
@
4Y!)?b!
!L ]
+
%
08!>
% *%
0
@
%
0.25
Elastic flow throughput
Multirate
!>Z)?)!>1system.
=V!3*08!>Qi0eN!>s]c(RD!5!
a1
1
a2
Upper bound
Simulation
Lower bound
All traffic elastic
0.2
0.15
0.1
0.05
0
0
|?|SrVu
ulyx
*
0.25
)(R()![!LS)?*%<!-c!
LH!Z%T)!
4
"!)!Y!N!8)?-5o hedeZ5!)!>1=b-1=b8!>%
b>=S!>%kc)--!L5!?]!>!7`f« aIQ`f«6?a8R
R!F_?sk08!)(,
=VKRGH?Q!,N-!5!A0I=.AgJ
-!>!
!L * SL!GHDK->7(!?Q%T7
(R
!5!>
# *
# «6VdeK-(j5)
!]-!>1=Q!
0
@
2
2
B5&%T8?)(b)-8bF-5!L7-(j5)BF!-]
« %wcRGH(l-(jK)
%
%
$
Elastic flow throughput
0.15
0.1
0.05
0.2
0.4
0.6
Elastic traffic load
0.8
1
x |v?TvyR^ Fuwtktgx6y
qAx6yZyRt&qP |?|0
, % # 2 % # 2 «
0
@
5. CONCLUSION
0.3
+ Z?GH7!GHN-%T
)7I%TcK1023b!6"J
L(R!LKF!)7b!GH&F-?5!L@M?08Cde-c
?GHY&L?R8()"!)s!6"F8%w!LA!--!>!GHB7-(%'J
_)b)(()!F!)
!3b*!F-!!D%&F!)NM?0 -![
9F-?5!LVM?0 (R!l^ERG6!-!!LQ5)?^
.GH?-?%)?F;%AF!)UF-5!L
-(jK)9
*=]c!6>=%DU)5-(%'J
_)
F-)508!)(9!D)6!6=UGHG6!LVD0 !)?RJ
!I5LPde!2?]!>e2bF!)7
F-5!L
M?0828->=5!GHH08!)(5)K&%T)?K]=D8!KJ
56(R!%c)(3H-JfGHI5)"!-5@!3HS-JhM?0 %T!>
]!L@!S"
0.2
0.1
0
0.2
0.4
0.6
0.8
1
Elastic traffic load
0.5
Streaming flow throughput
0.2
uwyRx
Yx6y fqyr.kx q
yRt & .|vyRx6rUTl;vyR ^
uk|x6y| fqySUrVu v?yRvxU|{l|vxr
0
Upper bound
Simulation
Lower bound
All traffic elastic
0.4
APPENDIX
0.3
A_FZRG!AD)--=V
R!gQ!--!>!G6!>1=;"J
->I%TB102368%g])--&-R!L56NL!GHc
]%g%gde ZSg-!>!,
+
0.2
0.1
A.
0
0
1
Upper bound
Simulation
Lower bound
All traffic elastic
0
Upper bound
Simulation
Lower bound
All traffic elastic
0.4
0.8
0
0.5
0.4
0.6
Elastic traffic load
vyRvx.|{w|vxr
Streaming flow throughput
0.2
0.2
0.4
0.6
0.8
Elastic traffic load
1
uwyRx
&x6y iqyrQkx¬q
yt & ,|vyRx6rUw*vyR 9
uw|xy| fqy
,rVu vyRvx.|{w|vxr
x |v? vyR9
F uwtwtPx6y
q@x6yZyRt&qC |?|5
% # 2 % # 2 «$
0
@
INSENSITIVITY RESULTS
+ P)-!EY1023Z% ])--g-!LY6 m FJ
5"DR-!GNK;k!--\])-K%&!]-!i=E, &K6
-Z?]!>,!< !< sB-"G!)Q%5!>V5???GH,U"-J
0e3U)
-GH &6@
)?UL,!AF(RJ
]k-G6!)e( + 2e]= H -"` !saC-G6!)2(
%g6 P!*F(G
! #"` ! 0
!
a"08"L
! !8Z6@
*222* "
%P)F5B&6 ->
8l @(C77!>BGH)Y08!>^A!
)56 C D-"08%T #:
.
*222*
R-!)7)'-Z%2])--A--J
Balanced
!LA10236networks.
2!e)(R()"![?56=@8%T?08!L@)YJ
"-1=s
]=
H `"!
R
H `"!sa
@ a
#
R @ a
H "` ! ! a
* *
H `"s
*
!*
! =
7
*
! =
`"! R @ a
*
H "` !sa
`"!sa$#
!N
D! =
*B
'
+ 1
BZ)Z%T)!I)-!G>=*_?
`a :
# 7s
`"!saI#
'
`"!saI#
H -`"!sa
H -`"!sa
$
10
5!
`"! R @ a
2
H -"` !sa
`"! R @(1a
*
H -"` !sa
-
T -
- 5
T
H -`"!sa
H -`"!sa
*
*
!N
! =
2
?)2%'I5!)!i=7-1=7REI6@
e
%g)F5"8&?)(*6Z%kZi0e38)(R()![*6=
)5%T)! !@-)!GH>=,-
"K
L@.!.K!L!2i0e3 !L*]= !k
` ac
!k
` -ae7)--!L5i0e3NF(cY!5 02A?)
R?
+
!w
`a
x
x2
10
B]= !w `"!ae `"!saC6e)--SDc5!!D
0e!L]N^;
!D02!L]b%7c!>)"
5%
F(L
!bDF(RG
S`<)%i !LK
a"2dec-G6!)c(I!b-
"10e36EP-)!GH>=ZRLPZ-
k7!AC!LJ
!l1023
2
'
+ 1
`HaQ#
2
&bD!5"_!>!!5!']S!G!0 %BN)
-i=]
Z]= w
! `"s
! aY
?=*@G6!0e.c@02!L]Z%
]=7!>)kZ%'F(R 7
! &F(R R08eY!>)k7!
@-8%E)-)!GHcF(R5k
! `H
a ! k
! `FRa w
! `f«a
! ` la k
*
*
*222*
-)"R k
! `;a #
! `
k
R Ra5R@ :
%Tb-5 `;a"
#
g08! # < !>< Nc0e!L6B%P-)(VKR;!Y
*222*
!6GH-I%e6)P% H `"k
! `*a-a%T
#
.`T%
*222*
!LKH
a"
'
)(Zi0e3wC3?087 + !>-P"10e362o «6"fPde=ZR
)(R()"![?56=@c)I%T)! )-!G>=K_?D]=
` a #:7s
8l"
!k`-a7
!l
`a
`f««a
*
08" ! .5 ! %5 -Qde
F(!-=^!FJ
-!!A%851023.F( !w
`aZ5-)!GH>=
`a" !k
L!GH*]=
φ1
P `"!sa$#
φ2
P `a
`"!sa %
"
P `"!aI#P `Ha
, T -
*&
0
*
`"!sa %
"
, T -
*&
0
*
RG6!?
cF(!!>1=S)!>!*
0
# 6
x1
&
"
uwyRx lx w kx iukkv?q `"!saIT|7xuw vqVv wx
Ax svKq 8s{ kyRxv5tkv
fyqr
|vvx!.vq9|vvx
!>-Z"10e3
!YF(Z!%ES>=b!>%1
+
`"!sa %
"
, T - N"!
'&
T
*
0
!N08!)"*)-cBF(!-=;!F-!!N!
P `"!saI#
P `a
`"!sa %
' &
, T 0
2
!
*
5
:! =
*
! =
*
*
-`"!R
@ a
-`"!sa
$
*
`"!sa 08
H `"!saC.! bV-Jf)F5b-G6!)
(RBR26 k!5F(5!wEdeY]%!P-
55"Ji
)5R!-808!>Si0eK)?*"10e36Zo ?h
, T - N"!
2
0
B5?k!UG!0%7`f««a"E!7)!!9!5!A7
!L!i0e3AZg)(R()"![?D]=ZC)e%)"J
! RZF(
XiSRGH*!>j5)>N\!GHQ!)!>*"--!N%T*
)@%T)! !.L"(< -!)'RZ)?-K!
08^N6@)?S6D?,!^-)(V0e=9@
%T?08!L
!'&-i=b8%8B!L!k"10e3
H -`"!R
@ a
H "` !R @(fa
*
H `"!sa
*
7
!*
! =
! =
*
2
X1b!8)?-0eZ-!5=bRG
iX \-!)'R?e!5F(R!R-=/!F-!!\!*©¨¨© <© K
7!F-!!N%g-G6!)c?]!>5]IRB]=S6
fX Ie)]>=
b-?08b
Non-balanced
Z')Znetworks.
-i=N!8!N%<)BD)--=S)!>!*%Y!J
--!>!G!>i=o Rh^de6A%TKQJi)?,1023gbF(J
!-=S!F-!!S!I--!>!GHZb!>IRGHI6-5>=
!>%J
_)>AQ!GH
!)!>@--! ])(F!)bA
*"10e3^F( !k` -a@)?\;"!G?I?0eGH"?IRG6!?
Zi0e3b!85!)Z!Sc%?08!L
--
"
*&
T
H `"!sa
"
`"!sa %
`"!sa$#
`"! R @(fa
*
H "` !sa
`"!saI#
`"!R @(fa
*
H "` !sa
08" l!PI
R!@!DD85!!D:!@-)(
RL
! = -)"!G>=]Kde6 `"!aB `"!saY)--
.02!L]5%cF-(!L]
RK%' F(RF!/QF(
#4«@)--0eZ(!l
`"!aQ#
`"!aQ#
H
@
`"!sa
222
H
@
`"!
0
'E@
a H
@
0
`"!
a
0
H
0
222
`@
0
a 2
H
0
`"!sa
222
H
0
`"!
@
'E@
0
a H
@
`"!
@
a
222
H
@
`@
@
a *
B.
PROOF OF THEOREM 1
/
--5B % 1
Necessary
condition.
-5Z!3 2iPstability
XiI%T?08Y
% `Fn]aI.`FRa2?
4
*
`
a
/
/'2)3
$
10
4
- +-5
`
-
@(ia
R
08" 1 ) !cDGH)"A"_V]=
+ B))c?
/
%
$
2
`"! % a
4
*
!&%
8
$
! % g
2 *
C.
/
(
TV :
T
2
`"!saC, %TV , )
T #
T
`"!%a 1U%TV
4
9
$
/
&
1 % /
-
9
#
!
`
a
4
*
` a
4
N
%
` a$#
4
- '2)3 - 0
/
&
+-
/
/
%
'&
% 0
(
%
10
g
2! *
0
/
:
4
+
"
%
* &
` a 1 +>#
/
/
!LN]= # -5-cB!?]!>i=
g
*
4
*
=
&
0
0
`"!saC, %T V , )T
8
*
8
!&%Q'
!&)
*
+ $
`"!
$
! %
`"!
4
:
T
`"!aC, %TV , )
T %
* &
0
@
- - /%
-
&
0
`&
R
@
%!
`
4
R
/
1 % R
/
1
6
T
%$"
R
D
@Xi%7
0
@
?]!G]I
`
a
*`
'
'Ra
@
`
4
R7`
a
@
`
4
'
@
R
@
@
a
0
`f« a
2
R
0
@
@
@
a
`
4
'E@
'%"a6'%!
R
@
R
@
%"
R
a
0
*
2
c%<)8R?
@
%$!
#
!@
("5$
6
2
gRGHEC!6!>1=&%TI#4«6
'E@
@
5
=
0
`
4
R
0
`
a @ a
4
'E@
@
$
@
'«
l!?]!>1=^`f«6?aB!
=
@
R@
0
a
@
4
@
a
`
4
`
a
4
'(@
@
`>
'E@
R
0
@
0
R
a
@
a,+
@
`f«:a
2
YRGHA`f«:aC]=K!)!b 0 ' $B8R2Y->
@
&%( #`F ?a"B7)?.-
!>=;6SZ->
*
Z6=@F( 7-)(D 0 #:8 #: --5C2->
@
C%8.K-)(5 0 ' E5KI]=KF(
@
-)(N 0 '5 #
' + Z)?;--5cR
0 = A
@
L' @ 0 R @ = YdeZ-3S!Y(R?*!;F(
@
@
G'E@
R(@ 0 -5R?s>=!LKc->B%T 'O@ 0 R @
@
@
L'(@
R @ 0 0eZL?
+
6'
'
2
)T
!&) &
'E@
%$!?a+'4`&!
+
1 )T %T V ! '
) &2
` a` 1 % 'a +
/
@
Proof
inequality
g0eb)?9?(21).
-!>=9)()(3QA5-@@08
A%of
)
4
+
<
R
@
#
%!
2
T 1
% 'E! ) a T
`
a
%$"
% '(! ) a 1 %TV
"
@ a
2
@
!3;)?)!>i=]02
`G
R
R
0
deZ]%ES%R08Y%
`f«Rn]a
2
`f«a
4
%
4
B%Te
8-)(DR
/'2)
3 I#:
* 222*
10
+ Z
?GH
-
T V
3 -!L*`f«Rn]a"027?)
*
`
a
4
! % '(! )
4
!&%;:
/
/
B@);?!=VG!>%=*B
'E@
@
c%<)8R?!NG6!0%I`Fn]a"
T
T
&?/ 0/ / $ / " 08!> / =
0 1 % ' N 8
R
`
a
7?)&%£`f«HaIU`f«a2?
+
/
D
R!@
08!)"*-!5=
%R08Y%
/%
`
4
$
$
-@
/
1 % R
'
08!> / 1 0
/' 2) 3 Pde!C%
/ )"!5!F_C%TI6= $ "
-)"S 1 0
)$N %Tc 2i
-
@
'
#%
/
/
8
&
0
R
YRGHA`f« aC]=K!)!b 0 ' $B8R2Y->
@
%T) #
`F ?a"Y-!)9. 0 '¤. .6` 0 a"Xi
@
@
*
$
!*;!jK)>N^6/V->S\]=F()/-)(
R 0 # b
#£ --5K
->@'@%
@
-)(\
0 ' E8^" 9*]=F(*-)"
@
'"
#
' + D)?,--5@ 0 = K
=
0
@
@
#
` L'K@ 0 R« @ a" J#
` RE@ a" !J#
` R(@ 0 a
_
@
@
4
4
#
" #
` L'O@ R
« @ 0 a" + A36?0:
@
$!A4 #
! @
@
4
%" 3 -!LNK%<)"A7@-3;!A($?U!.F( $ JR@
' @
' @ 0 R@ c)?*?-!>=*G!>%=
R?
0
`f«Ha
/'2)3
%/
&
0
/
+
*
`
a
4
08
!wP)C%T)!D--])!?708!7P-Jf)?
4 iFJiJh%-0IR(b])?R!l
"
&
2%@#-
#8 #6
&R0,!l%T?08
0
@
%2EJi"j5)!)"=@%-e10236eo REP-3
!BR(*!Q6=SF( N-)"S
0 = D
= -
@
R
` Q
a #
` JR @ 0 +
a '
` GR(@ a de68!?]!i=U`f
« HaI!
@ 2
4
4
4
?]!G]I
/
1 Sufficient
condition.
w!36 2i stability
¡«Rh0eZ-cB%<)Y?
8!Uo de
%/
.
PROOF OF PROPOSITION 1
2
/
--5D
- < - - *
@
Proof
!?]of
!>1=Zinequality
087(20).
!>"
*
088e_FP%R08e%' 86@E%w!>)C
%' F(L
!SKF(G
6CXiN-!)R?
2
deZF(!!>1=S)!>!,`FHae'
?
!
"
%
' &
T
8 :22-g%F($!@-)(A$! ) # &G! % #Y%
I-)"VR 2 + D?)A% G6!c!?]!>1=
`"!saC, %TV , )
T 1 ) 1 ) #
2
@
)
`
a
$
`
@
'Ra
%$"
'E
%$!
'«
%$Q'-
@
R\`
@
.%!
R\?a
2
)
=!L
L?
`D
RE@
`
)
$
%"
`
'E
`D
R
%$!Q'\«%$Q'
@
0
a
.%!
$
R\?a
-))--!GH=]02
@
." ' Q'«!?a0'*%$!Q' %I' @
@
` RRa.(!
@
%$! @.Q'*%$Q
! ' %Q '- @
@
` R?a.%!
/ ` @ !Q'\@ «Q '*%a+' ` %L'? aR %!`F '
` RRa.(!
@
` R\?a.%! '-
` %L'? aR / ` % '?a
@
` R^Ra.%!
2
@
#
$
#
$
&?0-!L
a
'?a
@
%s`-`
@
@
$
'Ra
@
%$!0eZ(!
REFERENCES
)
`
a
$
%
. ?a
6
o"L@ L!>!l 8P L!! m !LK]=
&J !G -5!L !)!!l
1# 4 #Fª
ª0# #
D« H«]
o «? 7 <¢A 7 3]!-l ?=N 3H"?
=5!) 7 ?G!Y% ?08>=6J &--!GH m LF!
1# 4 #F
ª ;
m ]- L!>5!l
«
o R 7 ?¥"dB 7 s E! " L! 7
&- (!F!)?l08!6N-R!L
F=b%
)LF!V8M?0GH<!l
15# 4 #1
ª V
«
o n7dB 7 * 8P --M! Xi5)"8% !>-Y
X1]Yk-%
)!l
15# 4 #1
ª © ;"1(© ¨
«
o ?7dB 7 * E! X1--!>!G6!>1=b!
])---Jf-R!L
i0e3k-%
)7OgG!
n *`f
« :«aB
"!
« :6
o R7dB 7 * E! X1--!>!GHc08!
-R!L5!*(D10236B!L =F5Inn*`f
« ::a
:#!
:
o ?7dB 7 * E! BNF])(F!)Ae%T
5!)Z])--&-!LKi0e35?R&!
B!L =F5« n
o R7dB 7 * &- m LF!V8MR0GH
bB!5)8%w-8?G!? m 5S
&10236
n]«N`f
« : Ha8«]$ !
:6
o R7dB 7 &!-(5 m )!L5M?0GH
-%
)Z8)?S%T!>-5?R&!
k-%
)7OgG!s
« :n
o>
)!L g! 7 LM! 6!L
!]L(R!;%EF-5!L5S(A-(j5)k-%T
)
OgG!;N`f« nHaZ H#
!6« o>G
7 -!hk m -?5!L@dl(Rj5)
!>-
BGH 8l?0
15# 4 #1L
ª 6© 15% 7 08!6 + 8l!36!
% #21 35¨ #'& # 1 6;(&)& © § <© # ¨( -s« ::6
o>?«R ?=S K <E5!LDB-Z%k6JfJf
)LF!;)]-l!NcX1]?XFOPOCOCW m
dl()"!YF
&10236!L b`F
: HaIn]
"!]n «]
o>
!5!k &-Y 7 +
*0e-?¢B??G]=
(!?
W W]Ji 6e08!N!5!)Z*5!--!
)6-s!S)"3H"Ii0e3!l
1# 4 #Fª , ?ª#$#
D
« :6
¢&! 7 3? + + !-& + ])?08-36!<
-0I(!L
g¢ 7 XFOPd
--
m « :6w: o>R?G@ )-l&KU&!)(B Kk6!< *OE!>?
-0e(!L5P¢ 7 X1OCd
m « :
6k :6
o>R
Z>=] A + !!'5 !N56%TB@i0e3
(R!L58A%<!>&08!6Jf-R!LK!)=]
Y! I% !NE!!>1=]« : o>
?AE Z=] 8P --M! 7 !V
Z=]
"10e3bM?056%T&5!>6I%k_c-(F%
bF-?5!LD-(j5)!l
1# 4 #Fª ( (-s
« ::6
o>
R U
Z"(!l Z
? ])(F!) 6Y%
deL =-!8I
% &5= -!G6!LDOPF!)
?08Y!NcXi]?!l
1# 4 #Fª . ª0# #
D
« :«6
o>
R 8P --M! @
+ Y- 7 08!N-!L
S5!--!*)]-%&F!)Z-(j5)
dw)5D!)?! =F5B?N`f« :Hac
#
!6«
o « RG
AU
[@B! ¥-6 ¥1S!5I!*D])--&-!L
6Y08!>N-G6!)c!]-!B!L =F5S
n
`FJfn]ac`f« :a 6$ ! :
o «6"G
A -%[ "15# % <© # #/ #$§¨ <© 0G;1 #21 3¨
PLw
:6
!L5
o ««?G
@de!5l !D'R!NF!8N-%T
)Z%
)?b%<!>-
Y-?R)"F
Y- W
« ::6¢B-!3!
L 8w(-=]
3 !GH"-!i=b%gdw)"L=] Bi0e36!
« : o>n
!
© Copyright 2026 Paperzz