HOMEWORK 5 SOLUTIONS Section 3.3 1 We’ll solve the inhomogeneous diffusion equation on the half-line with Dirichlet boundary conditions using the reflection method. The setup of the problem is as follows: u− kuxx = f (x, t) 0 < x < ∞, 0 < t < ∞ u(0, t) = 0 u(x, 0) = φ(x). Because we have a Dirichlet boundary condition, we’ll use odd extensions of f and φ. Now we must solve the problem vt − kvxx = fodd (x, t) − ∞ < x < ∞, 0 < t < ∞ v(0, t) = 0 v(x, 0) = φodd (x). Now we use the formula for the solution on the whole line: v(x, t) = ∫ ∞ −∞ ∞ =∫ 0 +∫ −∞ ∞ 0 =∫ 0 ∞ t S(x − y, t)φ(y)dy + ∫ t ∫ ∫ ∞ −∞ ∞ 0 0 0 =∫ S(x − y, t)φodd (y)dy + ∫ S(x − y, t − s)f (y, s)dyds 0 S(x − y, t)(−φ(−y))dy + ∫ t 0 S(x − y, t − s)fodd (y, s)dyds ∫ 0 −∞ S(x − y, t − s)(−f (−y, s))dyds [S(x − y, t)φ(y) − S(x + y, t)φ(y)] dy + ∫ [S(x − y, t) − S(x + y, t)] φ(y)dy + ∫ 0 t ∫ t ∫ 0 0 ∞ 0 ∞ [S(x − y, t − s)f (y, s) − S(x + y, t − s)f (y, s)] dyds [S(x − y, t − s) − S(x + y, t − s)] f (y, s)dyds 3 Let W (x, t) = w(x, t) − xh(t). Then we have Wt − kWxx = wt − kwxx − xh′ (t) = −xh′ (t) Wx (0, t) = wx (0, t) − h(t) = h(t) − h(t) = 0 W (x, 0) = w(x, 0) − xh(0) = φ(x) − xh(0). Now we solve the inhomogeneous Neumann problem on the whole line using even extentions. Let γ(x) = φ(x) − xh(0) and f (x, t) = −xh′ (t) for 0 < x < ∞. Then we have 1 2 HOMEWORK 5 SOLUTIONS ∞ W (x, t) = ∫ −∞ ∞ =∫ 0 t +∫ 0 =∫ ∞ t 0 =∫ 0 =∫ ∞ 0 ∞ 0 t 0 ∫ ∞ −∞ S(x − y, t − s)feven (y, s)dyds S(x − y, t)γ(−y)dy S(x − y, t − s)f (y, s)dyds + ∫ t ∞ 0 ∞ ∫ 0 −∞ 0 0 S(x − y, t − s)f (−y, s)dyds S(x + y, t)γ(y)dy S(x − y, t − s)f (y, s)dyds − ∫ t 0 [S(x − y, t) + S(x + y, t)]γ(y)dy + ∫ ∫ 0 ∞ t 0 ∫ S(x + y, t − s)f (y, s)dyds ∞ 0 [S(x − y, t − s) + S(x + y, t − s)]f (y, s)dyds [S(x − y, t) + S(x + y, t)][φ(y) − yh(0)]dy t 0 0 −∞ S(x − y, t)γ(y)dy − ∫ ∫ ∞ = +∫ S(x − y, t)γ(y)dy + ∫ ∫ 0 +∫ S(x − y, t)γeven (y)dy + ∫ ∫ ∞ 0 [S(x − y, t − s) + S(x + y, t − s)][−yh′ (s)]dyds. Finally, we use the fact that W (x, t) = w(x, t) − xh(t) so we have w(x, t) = ∫ ∞ 0 [S(x−y, t)+S(x+y, t)][φ(y)−yh(0)]dy−∫ t 0 ∫ ∞ 0 [S(x−y, t−s)+S(x+y, t−s)][yh′ (s)]dyds+xh(t) 3.4 1 We use Theorem 1 with f (x, t) = xt, φ(x) = 0 and ψ(x) = 0. This gives u(x, t) = = = = = 1 ∫∫ f 2c △ t x+c(t−s) 1 ysdyds ∫ ∫ 2c 0 x−c(t−s) t 1 1 2 x+c(t−s) ∫ s [ y ∣x−c(t−s) ] ds 2c 0 2 t 1 1 s((x2 + 2xc(t − s) + c2 (t − s)2 ) − (x2 − 2xc(t − s) + c2 (t − s)2 ))ds ∫ 2c 0 2 t 1 ∫ s(4xc(t − s))ds 4c 0 =∫ 0 t xts − xs2 ds t 1 1 = xts2 − xs3 ∣ 0 2 3 1 3 1 t = xt − xt 2 3 1 3 = xt . 6 HOMEWORK 5 SOLUTIONS 3 3 We use Theorem 1 with f (x, t) = cos(x), φ(x) = sin(x) and ψ(x) = 1 + x. This gives x+ct 1 1 1 u(x, t) = [φ(x + ct) + φ(x − ct)] + ∫ ψ(s)ds + ∫∫ f 2 2c x−ct 2c △ x+ct t x+c(t−s) 1 1 1 = [sin(x + ct) + sin(x − ct)] + ∫ (1 + s)ds + ∫ ∫ cos(y)dyds 2 2c x−ct 2c 0 x−c(t−s) We’ll evaluate each term separately. The first term simplifies to sin(x) cos(ct) by the angle sum formula (although you are not required to perform this simplification). The second term is: x+ct x+ct 1 1 1 ψ(s)ds = (s + s2 )∣ ∫ x−ct 2c x−ct 2c 2 1 = (2ct + 2xct) 2c = t + xt. The third term is: t x+c(t−s) t x+c(t−s) 1 1 cos(y)dyds = ∫ ∫ ∫ sin(y)∣x−c(t−s) ds 2c 0 x−c(t−s) 2c 0 t 1 = ∫ 2 cos(x) sin(c(t − s))ds 2c 0 t 1 = 2 cos(x) cos(c(t − s))∣ 0 c 1 = 2 cos(x)(1 − cos(ct)). c Putting it all together we have 1 u(x, t) = sin(x) cos(ct) + t + xt + 2 cos(x)(1 − cos(ct)). c 5 This problem isn’t pretty, but here it is worked out in excruciating detail. We’ll make extensive use of Theorem 3 from Appendix A.3, which says the following: b(t) b(t) d d f (x, t)dx = ∫ f (x, t)dx − f (a(t), t)a′ (t) + f (b(t), t)b′ (t). ∫ dt a(t) a(t) dt First we’ll verify the initial conditions: 0 x+c(0−s) 1 f (y, s)dyds ∫ ∫ 2c 0 x−c(0−s) =0 u(x, 0) = since we’re integrating from 0 to 0. t x+c(t−s) d 1 f (y, s)dyds ∫ ∫ dt 2c 0 x−c(t−s) t d x+c(t−s) x+c(t−t) 1 = (∫ [∫ f (y, s)dy] ds + ∫ f (y, t)dy) . 2c 0 dt x−c(t−s) x−c(t−t) ut (x, t) = When we set t = 0 the first term disappears because we’re integrating from 0 to 0 and the second term disappears because we’re integrating from x to x. Thus, ut (x, 0) = 0 as required. 4 HOMEWORK 5 SOLUTIONS Now we proceed to verify that utt = c2 uxx + f . Continuing the computation from above we have ut (x, t) = t d x+c(t−s) x+c(t−t) 1 (∫ [∫ f (y, s)dy] ds + ∫ f (y, t)dy) 2c 0 dt x−c(t−s) x−c(t−t) = t d x+c(t−s) 1 [∫ f (y, s)dy] ds ∫ 2c 0 dt x−c(t−s) = t x+c(t−s) d 1 f (y, s)dy − f (x − c(t − s), s)(−c) + f (x + c(t − s), s)(c)) ds ∫ (∫ 2c 0 x−c(t−s) dt Since neither y nor s depend on t, we have d dt f (y, s) = 0 so this becomes t 1 ∫ cf (x − c(t − s), s) + cf (x + c(t − s), s)ds. 2c 0 Now we differentiate with respect to t again: t d 1 utt (x, t) = ∫ cf (x − c(t − s), s) + cf (x + c(t − s), s)ds dt 2c 0 t d 1 (∫ [cf (x − c(t − s), s) + cf (x + c(t − s), s)] ds + cf (x − c(t − t), t) + cf (x + c(t − t), t)) = 2c 0 dt t d 1 (∫ [cf (x − c(t − s), s) + cf (x + c(t − s), s)] ds + 2cf (x, t)) = 2c 0 dt t d 1 = (∫ [cf (x − c(t − s), s) + cf (x + c(t − s), s)] ds) + f (x, t) 2c 0 dt In order to differential the terms inside the integral, we’ll need to apply the chain rule. To make it easier to read, let’s let a = x − c(t − s) and b = x + c(t − s). Then we have t d 1 = (∫ [cf (a, s) + cf (b, s)] ds) + f (x, t) 2c 0 dt t 1 ∂f ∂b ∂f ∂s ∂f ∂a ∂f ∂s = (∫ c [ + ] + c[ + ]) ds + f (x, t) 2c 0 ∂a ∂t ∂s ∂t ∂b ∂t ∂s ∂t t ∂f ∂a 1 ∂f ∂s ∂f ∂b ∂f ∂s = (∫ [ + ]+[ + ]) ds + f (x, t) 2 0 ∂a ∂t ∂s ∂t ∂b ∂t ∂s ∂t Since s doesn’t depend on t, finally get a formula for utt : ∂s ∂t = 0. We also have utt (x, t) = ∂a ∂t = −c and ∂b ∂t = c. Putting this together we t c ∫ [−fa (a, s) + fb (b, s)]ds + f (x, t). 2 0 Now we’ll compute uxx : t x+c(t−s) d d 1 f (y, s)dyds ∫ ∫ dx dx 2c 0 x−c(t−s) t d x+c(t−s) d 1 = [ f (y, s)dy] ds ∫ ∫ dx 2c 0 dx x−c(t−s) uxx (x, t) = = t x+c(t−s) d d 1 ( f (y, s)dy − f (x − c(t − s), s) + f (x + c(t − s), s)) ds ∫ ∫ dx 2c 0 x−c(t−s) dx As before, since f (y, s) doesn’t depend on x, the t d dx f (y, s) term drops out and we have d 1 ∫ (−f (x − c(t − s), s) + f (x + c(t − s), s)) ds dx 2c 0 t d 1 = [−f (x − c(t − s), s) + f (x + c(t − s), s)] ds ∫ 2c 0 dx = HOMEWORK 5 SOLUTIONS 5 As before, let’s let a = x − c(t − s) and b = x + c(t − s). Then we have t d 1 = [−f (a, s) + f (b, s)] ds ∫ 2c 0 dx t 1 ∂f ∂a ∂f ∂s ∂f ∂b ∂f ∂s = + ]+[ + ] ds ∫ −[ 2c 0 ∂a ∂x ∂s ∂x ∂b ∂x ∂s ∂x t 1 = ∫ −fa (a, s) + fb (b, s)ds 2c 0 t 1 = ∫ −fa (a, s) + fb (b, s)ds 2c 0 That was a lot of work, but now we have nice expressions for utt and uxx . They are as follows: t c utt = ∫ −fa (a, s) + fb (b, s)ds + f (x, t) 2 0 t 1 uxx = ∫ −fa (a, s) + fb (b, s)ds 2c 0 It is now immediately clear that utt = c2 uxx + f (x, t) as desired.
© Copyright 2026 Paperzz