1 2 Evaporite-formsbyconcentra5on/crystalliza5onofwatersolublemineralsvia evapora5onofanaqueoussolu5on.Evaporitescanbemarine,andnon-marine.In addi5ontoprecipita5nginanopenbodyofwatertheymayalsoprecipitatefrom porewatersinsedimentsclosetothesurface.Mostevaporitesarederivedfrom evapora5ngseawater.Chlorineions(Cl-)makeup94.5%ofseawaterandsulfate (SO42-)makesup4.9%.Thisprobablyexplainswhythefollowingarethemost evaporiteminerals: Halite(NaCl) Gypsum(CaSO4.H2O) Anhydrite(CaSO4)–effec5velydehydratedgypsum Evaporiteminerlasareextremelyvaluabletoindustry.Forexample,tablesalt (Halite),Sylvite(KCL“potash”),gypsumandmanyotherevaporitemineralsare extremelyvaluabletothechemicalindustry.Inaddi5on,structurescreatedby“salt tectonics”areo[enassociatedwithoilandgasplays. 3 Thisfantas5cimageisNOTfromamovieset.Thesearegiantgypsumcrystals(some 11mlong)inMexico’sCuevadelosCristales.Thecrystalsgrewinthecavewhenit wasfilledwithmineral-richwateratabout58°C.Miningopera5onsexposedthe crystalswhenthewaterwaspumpedoutofthecave. 4 OfallthesedimentaryrocksdepositedsincethebaseoftheCambrian,evaporites onlymakeuparound1%.Evenso,theycanformextensivedepositspar5cularly whencon5nentsaregroupedaroundtheequatorresul5nginelevatedratesof evapora5oninshallowmarineseangs. Asevaporitemineralsareverysolubletheyareusuallyfairlyrareinoutcrop.Most evaporitedepositsareknownformsubsurfacesec5ons,o[enrevealedbydrilling. 5 Wehavealreadyseenthisenvironmentinrela5ontotheforma5onofdolomites.In supra5dalenvironmentsunderhotaridcondi5onstheevapora5onofwaterfromthe surfaceoftheexposedsedimentwilldrawsalinefluidsthroughthesedimentpores viaEVAPORATIVEPUMPING.Asthewaterisevaporatedgypsumisprecipitated directlyinthesediments.Halitemayalsoformonthetopofthesedimentforminga “mudcracked”surface.Thenetdeposi5onofmaterialwillcausethesabkhato prograde“buildout”intotheshallowsea.Thiswillcreatesedimentarysuccessions withaverydis5nc5vesetoffaciesinaver5calsense. GoodexamplesofmodernSabkhaenvironmentscanbefoundalongthecoastofthe UnitedArabEmiratesandBajaCalifornia. 6 Gypsumandanhydritewillformanumberofpossiblesedimentarystructures: 1. Discretegypsumnodules 2. Chickenwiregypsum:nodulesbecomecloselypackedandthesedimentbetween themrestrictedtothinstringers 3. Enterolithictextures:layersofnodulesthatgrowtogetherandcontort/foldas theydevelop Inmorelandwardareaswheretemperaturesarehigheryoumaygetthedirect precipita5onofanhydriteratherthangypsum. 7 Theseareprobablythemostimportantsourceofevaporitesthoughinmodern5mes wehavenomodernanalogue.Theyformwhenseawaterisevaporatedfromadeep basin.Ingeneralmarineevaporiteswillprecipitateinthefollowingorder: When50%ofmarinewaterisevaporateditispossibleforaminoramountof carbonatestobeprecipitated. When84%ofmarinewaterisevaporated:Gypsum When90%ofmarinewaterisevaporated:Halite When96%ofmarinewaterisevaporated:PotassiumsaltslikeSylvite Thesebasinswillcanhaveaveryrestrictedconnec5ontotheopenocean,possibly restrictedbyafault,carbonatebank,reeforsimilarstructure.Thesestructuresmay starttorestrictbasinsduringperiodsofloweringsealevel.Themayalsoonlyreceive wateroccasionally,perhapsduringstormswhichwillbeevaporatedformingsalt depositsandatalaterreceivingmoreseawater. 8 Thereisaproblemthough.A1000mcolumnofseawaterwillonlyproduce15.9mof evaporite(themajorityofithalite).Sohowdoyouaccountforsomeevaporite depositsthatareover1000mthickwithavariableevaporitecomposi5on? ANSWER:Reflux:Arefluxmodelsuggestsrepeatedinfluxesofseawaterintothe basinreplenishingwaterthathasbeenevaporatedtoallowtheforma5onofthicker evaporites.INADDITIONtheconcentratedbrinesthatareformedduringevapora5on aredenseandwilleitherseepintotheunderlyingsedimentsormoveoutBELOWthe influxoffreshseawaterinthecaseofbarredbasins.Inthiswayevaporiteswillhave amineralogicalsequencethatmightnotreflectasimpleconcentra5onofseawater andprecipita5onofmineralsatvarioussolubilitypoints.Indeedtherefluxofbrines canmaintainasteadyseawaterchemistryanddepositjustonetypeofevaporite mineralorifratesofrefluxaltercanproduceavariablesequenceofevaporite minerals. 9 Theevaporitesthatareprecipitatedinthesedeepbasinso[enformlaminaeand bedsthathaveaverywidelateralpersistence.AVERYgeneralsequenceoffacies thatmightberepresentedinaver5calsequenceofevaporitesdepositedinbasin seangcouldbe: 1. Organicrichsedimentsformedastheoceanbasinstartstostagnate.The circula5oninthebasinwouldbereducedandthebopomwatersrapidlybecome anoxic.Inthesecondi5onsanoxicorganicrichshaleswouldform. 2. Laminatedcarbonate/anhydriteasthewaterstartstoevaporate 3. Laminatedanhydrite 4. Laminatedanhydrite/halite HaliteprecipitatedduringLOWperiodsofreflux(highersalinity),anhydriteduring HIGHERperiodsofreflux(lowersalinity) 5. Thickhalitedepositswouldformasevapora5onbecomeswelladvanced 6. Finalevapora5onofbrinesproducingpotassiumandmagnesiumsalts(egSylvite) inisolatedsalinelakesandsabkha 10 Apartfromhalite,anhydriteandgypsumlakeevaporitescandemonstratesome uniquefreshwaterprecipitatedminerals.Themineralogyoflacustrineevaporites mayvarygreatlydependingonthelakechemistrywhichwillbeheavilyinfluencedby thelocalenvironment.Twobroadcategoriesofevaporiteforminglakeare: 1. Saltlakes.Dominatedbyhalitedeposi5on.GoodexamplesaretheDeadSeaand theGreatSaltLake,Utah. 2. Biperlakes.Dominatedbysodiumcarbonateandsulfatedeposi5on.Good example:MonoLakeinCaliforniaandCarsonLakeinNevada. Lakeevaporitedepositscommonlyexhibitazona5onwiththeleastsolublearound theedgesofthelakeandthemoresolubletowardsthecentre. 11 Makenotes:page315-318 12 Unfortunatelywedon’thaveenough5metogointoalotofdetailwiththese sedimentsandIhavehadtoomitsomeveryimportantsedimentslikephosphorites. BandedIronForma,ons(BIF’s) ABIFiscomposedofrepeatedlayersofironoxides(magne5te(Fe3O4)orhema5te (Fe2O3))alterna5ngwithlayersofiron-poorshaleandchert.BIF’saremostcommon between1.8–2.5billionyearsagobuthavenotbeendepositedforaroundthelast 500millionyears.Theconven5onalconceptregardingtheirforma5onisthattheiron layersinBIFformedasoxygenwasreleasedbyphotosynthe5ccyanobacteria(blue greenalgae).Thisincreasedrateofoxygenproduc5onbythebiospherecorrelates wellwiththemajorityofBIFforma5on(andstructurescalledstromatolitesproduced bythecyanobacteria)andiscalledtheGreatOxygena5onEvent.Theoxygen producedcausedtheprecipita5onofironinsolu5onintheEarth'soceanstoform insolubleironoxides(rust),formingthethinlayersofironrichsedimentinBIFs. Somehavesuggestedthateachbandmayresultfromcyclicvaria5onsoxygen- possiblyrelatedtoincreasedphotosynthesis(andthereforeoxygenrelease)during summermonths.BandedIronForma5onsareaveryimportantsourceofironore. 13 Chert Fine-grainedsilica-richo[enmicrocrystallinesedimentaryrock.Demonstratesgreat varia5onincolorbutismosto[engray/brown.Cherto[enpossessesaconchoidal fracture.Theexactmechanismofchertforma5onispoorlyunderstood.Somecherts canformwhenthesiliceousskeletonsofmarineplanktonaredissolvedandthesilica reprecipitatedduringdiagenesis. 14 Coal Black–brownsedimentaryrockcomposedprimarilyofcarbonalongwithvariable quan55esofhydrogen,sulfur,oxygen,nitrogen.Commonlyfoundinbedsorcoal seams.Someformsofcoalsuchasanthracitemayberegardedasametamorphic rockduetothehightemperaturesandpressuresithasbeensubjectedto.Coalforms whenorganicvegeta5oncollectsandisnotoxidized.Ini5allytheplantmaterialforms peatbutincreasingburialtemperaturesandpressuresdriveoffmuchofthevola5le material,increasingthecarboncontentandeventuallyformingacoal. 15 Volcaniclas,cDeposits:Clas5crockscomposedmostlyofvolcanicmaterialsthat havebeentransportedbywindorwater. Pyroclas5crocks:generatedbyexplosivevolcanicac5vity.Depositsincludeash, lapilliandbombsorblocksandmayincludeshaperedcountryrock.Ignimbritesarea typeofpyroclas5cdepositassociatedwithhigh-temperaturegasandashflows. 16 Hyaloclas5tes Volcanicbrecciacontainingahighpropor5onofblackvolcanicglassfragments. Hyaloclas5tes formwhenvolcanicerup5onsinteractwithwater.Fragmenta5oniscausedbyforce ofthevolcanicexplosion,orbythermalshockwhenthevolcanicmaterialiscooled rapidlybywater. 17 Lahars Mudflowordebrisflowcontainingahighpropor5onofvolcanicdebris.They resemblesedimentarybrecciasandconglomeratesinoutcrop.Laharscanreach speedsof100kphandflowforover300km.LaharsfromtheNevadodelRuiz erup5on(Colombia1985)killedanes5mated23,000whenthecityofArmerowas buriedunder5metresoflahar. Laharsdonothavetobeassociatedwithvolcanicerup5onandcanbegenerated duringwetcondi5ons(suchasmightbecausedbymel5ngsnowandglaciersorby highrainfall)whenpartofanexis5ngvolcaniclandscapecollapses.Earthquakes couldactasatriggeringmechanism. 18 19 20 Sedimentaryfacies–aunitofsedimentaryrockwithspecificcharacteris5cs. Generallythesecharacteris5csreflectapar5cularprocessorenvironment.For example,thewhitecliffsofDoverintheimageaboveformedinaspecificwarm shallowmarineseangthatallowedforthedevelopmentofchalkfacies.Thedune crossbeddedsandstonefaciesintheotherphotographformedinahotariddesert environment. 21 Faciesaredefinedby:sedimenttype,typeofsedimentarystructures(example: ripples)andsome5mestheirfossilcontent.Forexampleyoucoulduse“rippled sandstonefacies”a“fossilferousmudstonefacies”a“crossbeddednearshorefacies” ora“conglomera5cfacies”todescribetheimagesabove. Sincedeposi5onalenvironmentsgradelaterallyintootherenvironments-facies changesareo[enGRADUAL.Considerthenextslide……. 22 Thisimageshowsriverdeposi5ngsedimentintoashallowoceanthatpassesintoa deepermarineenvironment.NOTE:theslopeonthisdiagramisGREATLY exaggerated.Astheriverbringssedimentintothissystemitdepositsitscoarsest/ heaviestloadfirst,inthiscaseaconglomera5cfacies…possiblyrepresen5ngabeach environment.Inthisshallow/turbulentenvironmentfinesedimentwilltendto remaininsuspensionandwillnotbedeposited.Thefinercomponentwillgradually bedepositedinquieterwatercondi5onsgivingaprogressionoffaciesfromcoarse clas5csclosetotherivermouthwiththefinestmudsdepositedinthedeepest/ quietestcondi5ons.Eventuallyalltheclas5cmaterialwillhavebeendepositedandin thishypothe5calmodelitispostulatedthatcalcareoussedimenta5onof coccolithophoretestswillbecomeimportantproducingacarbonatefaciesinthe quietestcondi5ons. 23 24 Thepreviousmodelisnotdifficulttounderstandbutthingsgetaliplemorecomplex whenyouconsiderthatfaciesMIGRATEgeographically.REMEMBERfaciesarethe sedimentological“fingerprint”oftheENVIRONMENTinwhichtheyarebeing deposited.Theloca5onofpar5cularenvironmentalcondi5onsCHANGESover5me… justconsiderthecurrentadvanceoftheSaharadesertorhowfullyglaciated condi5onsaregivingwaytoperiglacial(placesontheedgeoffullyglacialareas)in current5mes.Ascondi5onsinspecificareaschange,thesedimentstheyrecordover TIMEwillchangeasenvironmentsANDthefaciesthatforminthemMIGRATE.This changeinTIMEwillberepresentedbychangeissedimenttypeVERTICALLY. Oneofthemajordrivingforcesinthemigra5onofenvironmentsandfaciesissea levelchange.Sealevelchangecanbelocal(forexampleifanareaisexperiencinga generaldown-warpingofthecrustorifanareaisbeingraisedtectonically)orglobal (eusta5c)astheresult(forexample)ofmel5ngofpolaricecaps. 25 Inthefollowingslideswearegoingtoconsiderthemodelwelookedatearlierofa riverdeposi5ngsedimentintoanoceanandseewhathappensifsealevelwereto rise(transgression).WhatIwantyoutorecognizeisthemannerinwhichfacies MIGRATEOVERONEANOTHERoverTIME.ALSONOTE:thereisadifferencebetween theFACIESBOUNDARIESandtheTIMEBOUNDARES.Facieso[enCROSSCUT5me horizonsarereferredtoasDIACHRONOUS. At5me1wecanseewehaveconglomeratesdepositedclosetoshoreandsands depositedfurtheroffshore. 26 At5meT2sealevelhasrisenandasaresultshorelinehasmovedlandwardASHAVE THEBOUNDARIESBETWEENTHEFACIES. 27 AtTimeT3sealevelisevenhigherandthefaciesandshorelinehavecon5nuedto migratetotheright. 28 LocatelineA-A’onthefigurerepresen5ngonefixedloca5oninspace.Notehow,as sealevelhaschanged,DIFFERENTFACIEShavebeendepositedatthatloca5on.This hasoccurredbecauseenvironmentalcondi5onshavebeenchangingassealevel increased. ALSONOTE:The5meplanesarerepresentedbytheredlines.Ifyougroupthefacies together(theyellowlines)youcanseethatthefaciesCROSSCUTthe5mehorizons… thisiswhatwemeanbydiachronous. 29 Migra5onwillalsooccurin5mesofsealevelfall(regression).NotethatatA-A’the reversedver5calsuccessionoffacieswillberecorded. 30 31 We know the following facts: 1. Facies reflect changing conditions of deposition across our planet. In our example, shallow high energy, near shore conditions are characterized by sand. Deeper, quieter conditions are characterized by finer grained sediments. 2. As conditions change (such as sea level) facies will appear to MIGRATE, “following” their particular environmental conditions. 3. Over time this will lead to patterns of facies as one facies MIGRATES OVER ANOTHER. 32 4. This means that when we recover a vertical succession of rock (like the one we used in our example) we can PREDICT the lateral equivalence of facies …… As we go from coarse, near-shore facies at the bottom of the core to offshore, deeper water carbonate sediments at the top of the core, sea level (in this example) must have been RISING over time. 33 This is summed up in WALTHER’S LAW “Facies that occur in a CONFORMABLE VERTICAL SUCCESSION of strata, were deposited in laterally adjacent depositional environments.” and put another way…… adjacent sedimentary environments (facies) will end up overlapping one another over time. 34 PLEASE NOTE: the concept of facies changes and Walther’s law does not JUST apply to near shore / marine environments. Facies can migrate over each other in ALL Sedimentary environments. Consider a meandering river. As the river migrates across it’s flood plain it both erodes (on the outside of the meander loop) and deposits (on the inside of the meander loop) sediments. As the meander migrates it deposits sediments as various sedimentary facies characteristic of particular “environments of deposition” within the river channel system. As the meander migrates these facies are deposited OVER each other in accordance with Walther’s Law. NO - You don’t have to learn this figure. 35
© Copyright 2026 Paperzz