Calculus 1 Worksheet #100 Review with Calculator ** Remember- We must see any equations,integrals, and graphs, that you use to solve these problems** ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ YOU MAY USE A CALCULATOR FOR PROBLEMS 1−15 ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 1. The figure above shows a 16–foot ladder leaning against a vertical wall. The tip of the ladder is sliding down the wall at the rate of 5.6 feet per second. What is the rate of change, in radians per second, of the angle θ at the instant when the tip of the ladder is 7 feet above the ground? A) –6.223 B) –0.800 C) –0.389 D) –0.321 E) –0.070 ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ x 2. If F(x) = tan t dt, then F ’ (0.5) = A) 0.089 B) 0.093 C) 0.546 D) 0.739 E) 1.139 0 ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 2 3. The average value of the function f ( x ) e x on the closed interval [–1,1] is a) 0.7 b) 0.75 c) 0.8 d)0.85 e) 0.9 ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 4. The slope of the line tangent to the graph of y = cos(2x) at x = A) –1.564 B) –0.782 C) –0.031 D) 0.657 7 E) 0.782 is _____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 5. The area of the region enclosed by the graphs of y = 7, x = 0, and y = 2x is closest to: A) 9.0 B) 9.5 C) 10.0 D) 10.5 E) 11.0 ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 6. The slope of the line tangent to the graph of y = e–x at x = 4 is A) 0.050 B) 0.018 C) –0.007 D) –0.018 E) –0.050 ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 7. A rectangle of length 2k is inscribed in the region between the x–axis and the graph of y = cos x, as shown in the figure above. The value of k that maximizes the area of the rectangle is A) 0.5000 B) 0.785 C) 0.860 D) 0.866 E) 6.280 ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 8. If f ( x ) is odd and f (a ) b , then f ( a ) ? ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 9. The function f whose derivative is given by f ' (x) = 5x3 –15x + 7 has a local maximum at x = A) – 1.930 B) –1.000 C) 0.511 D) 1.000 E) 1.419 ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Revised: 3/17/2014 Calculus 1 Worksheet #100 Review with Calculator ** Remember- We must see any equations,integrals, and graphs, that you use to solve these problems** ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 10. Car A is traveling south at 40 mph toward Millville, and Car B is traveling west at 30 mph toward Millville at the same time. If both cars began traveling 100 miles outside of Millville at the same time, then at what rate, in mph, is the distance between them decreasing after 90 minutes? A) 35.00 B) 47.79 C) 50.00 D) 55.14 E) 68.01 ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 11. The graph of the function y = x5 – x2 + sin x changes concavity at x = A) 0.324 B) 0.499 C) 0.506 D) 0.611 E) 0.704 ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 2 using Reimann sums with: 12. Approximate x dx 0 (a) 4 left–endpoint rectangles, (b) 4 right–endpoint rectangles, (c) 4 midpoint rectangles, (d) 4 trapezoids: ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 2 13. 5x dx = 1 A) 2.726 B) 2.981 C) 3.354 D) 13.628 E) 20.442 ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 14. If ƒ(x) = 5 x3–2x , then ƒ ’ ( 3 ) = A) 0.129 B) 0.902 C) 0.906 D) 1.116 E) 2.173 ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 15. Given the function f(x) = ex/2 on the closed interval [–1,4], if c is the number guaranteed by the mean value theorem, then c (correct to three decimal places) is A) 0.998 B) 1.163 C) 1.996 D) 2.065 E) 2.325 ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 16. Free Response 2006B Problem #2. Do on a separate piece of paper. (ATTACHED BELOW) ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Answers: 1) C 10) B 2) D 11) B 3) B 12a) 1.5 4) A 12b) 2.5 5) E 12c) 2 6) D 12d) 2 7) C 13) A 8) –b 9) C ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ Revised: 3/17/2014 Calculus 1 Worksheet #100 Review with Calculator ** Remember- We must see any equations,integrals, and graphs, that you use to solve these problems** ______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ AB/BC 2006 FORM B #2 (CALCULATOR) SCORE = ________ __________________________________________________________________________________________ Let f be the function defined for x 0 with f (0) 5 and f , the derivative of f, given by f x e x 4 sin x 2 . The graph of y f x as shown at the right. A Use the graph of f to determine whether the graph of f is concave up, concave down, or neither on the interval 1.7 < x <1.9. Explain your reasoning. B On the interval 0 x 3 , find the value of x at which f has an absolute maximum. Justify your answer C Write an equation for the line tangent to the graph of f at x =2 Revised: 3/17/2014
© Copyright 2026 Paperzz