Math 185 Calculus II Formulas If u and v are functions that depend on x we have. Basic Derivatives 1. d d n (u ) = nun−1 · (u) dx dx − − − − − − − − −− (Chain Rule) d d d (u · v) = (u) · v + (v) · u − − − − − − − − −− (Product Rule) dx dx dx d d (u) · v − dx (v) · u d u = dx 3. − − − − − − − − −− (Quotient Rule) 2 dx v v 2. d (u) d (ln (u)) = dx 4. dx u 5. d d (sin u) = cos u · (u) dx dx 6. d d (cos u) = − sin u · (u) dx dx 7. d d (tan u) = sec2 u · (u) dx dx 8. d d (cot u) = − csc2 u · (u) dx dx 9. d d (sec u) = sec u · tan u · (u) dx dx 10. d d (csc u) = − csc u · cot u · (u) dx dx 11. d 1 d (sin−1 u) = √ (u) dx 1 − u2 dx 12. d −1 d (cos−1 u) = √ (u) dx 1 − u2 dx 13. 1 d d (tan−1 u) = (u) 2 dx 1 + u dx 14. d −1 d (cot−1 u) = (u) dx 1 + u2 dx c 2015 J.M. Villalobos Basic Integrals un+1 + C n 6= −1 n+1 Z Z 2. udv = uv − vdu + C − − − − − − − − −− Z 1. un du = Z du = ln |u| + C u Z au a du = +C ln a 3. 4. u (Integration by parts.) Z − − − − − − − − −− (if a = e then eu du = eu + C) Z sin udu = − cos u + C 5. Z 6. cos udu = sin u + C Z 7. sec2 udu = tan u + C Z 2 Trapezoid Rule b Z f (x) ≈ csc udu = − cot u+C 8. a h f (x0 ) + 2f (x1 ) + ... + 2f (xn−1) + f (xn ) 2 Z 9. sec u tan udu = sec u + C Where h = b−a n Z csc u cot udu = − csc u + C 10. Z tan udu = ln | sec u| + C 11. Z Simpson’s Rule Z cot udu = ln | sin u| + C 12. b f (x) ≈ a (n is even) h [f (x0 ) + 4f (x1 ) + 2f (x2 ) + 4f (x3 ) + ... 3 Z sec udu = ln | sec u + tan u| + C 13. Z csc udu = ln | csc u − cot u| + C 14. Z 15. a2 du 1 u = tan−1 + C 2 +u a a c 2015 J.M. Villalobos + 2f (xn−2 ) + 4f (xn−1) + f (xn )] Volume Z b 1. π[f (x)2 − g(x)2 ]dx −−−−−− Disk/Washer Method about the x−axis π[p(y)2 − q(y)2 ]dy −−−−−− Disk/Washer Method about the y−axis a Z b 2. a Z b 3. 2πx(f (x) − g(x))dx −−−−−− Shell Method about the y−axis 2πy(p(y) − p(y))dy −−−−−− Shell Method about the x−axis a Z 4. b a Trigonometry Identities 2 Arc Length for y = f (x) 2 1. sin x + cos x = 1 L= Z bp a 2. 1 + tan2 x = sec2 x, sin 2x = 2 sin x cos x 3. 1 + cot2 x = csc2 x 4. sin2 x = 1 − cos (2x) 2 5. cos2 x = 1 + cos (2x) 2 Trigonometry Values −− sin x cos x 0 0 √1 π 1 3 6 √2 √2 π 2 2 4 2 √2 π 3 1 3 2 2 π 1 0 2 π 0 −1 3π −1 0 2 2π 0 1 c 2015 J.M. Villalobos tan x csc x sec x cot x und 1 und √0 √ 3 2 √ 2 3 3 3 √ √ 1 2 2 1 √ √ 2 3 √ 3 2 3 3 und 1 und 0 0 und −1 und und −1 und 0 0 und 1 und 1 + f 0 (x)2 dx Sequences and Series Conclusion Test Convergent ak+1 =L lim k→∞ ak √ lim k ak = L 1. Ratio test 2. Root test L<1 k→∞ ∞ X 1 kp k=1 3. p-series p>1 p≤1 ∞ L = 1 Inconclusive Z ∞ f (x)dx = ∞ f (x)dx < ∞ 1 1 ak > 0, 0 < ak+1 ≤ ak 5. Alt. Series T. L = 1 Inconclusive L>1 ak = f (k) 6. Divergence Test Comments L>1 L<1 Z 4. Integral test Divergent lim ak = 0 k→∞ Does not apply lim ak 6= 0 k→∞ lim ak 6= 0 k→∞ Power Series 1. f (x) = ∞ X f (k) (a) k! k=0 x 2. e = (x − a)k −−−−−− Taylor Series ∞ X xk k=0 k! ∞ X 1 xk , 3. = 1 − x k=0 4. sin x = ∞ X (−1)k x2k+1 k=0 5. cos x = (2k + 1)! ∞ X (−1)k x2k k=0 −1 6. tan |x| < 1 x= (2k)! ∞ X (−1)k x2k+1 k=0 7. − ln (1 − x) = 2k + 1 ∞ X xk k=1 k , , |x| ≤ 1 −1 ≤ x < 1 Parametric and Polar Curves 0 dy f (θ0 ) sin θ0 + f (θ0 ) cos θ0 1. = 0 dx f (θ0 ) cos θ0 − f (θ0 ) sin θ0 - dy = 0 −→ horizontal tangent line. - dx = 0 −→ vertical tangent line. Z β 1 2. (f (θ)2 − g(θ)2 )dθ −−−−−− 2 α c 2015 J.M. Villalobos Area of regions in polar coordinates.
© Copyright 2026 Paperzz