MATH1131Q – Extra Practice with Derivatives – Solutions 1 David Nichols Taking Derivatives (a) √ f (x) = 2( x(x2 + sin x)) 0 f (x) = 2 √ 1 2 x(2x + cos x) + √ (x + sin x) 2 x (b) f (t) = csc t t2 f 0 (t) = (− csc t cot t)t2 − (csc t)2t t4 (c) g(x) = x + ln x sin x cos x g 0 (x) = (1 + x1 )sin x cos x − (x + ln x)(cos2 x − sin2 x) (sin x cos x)2 (d) y= ax cos x x2 + 1 dy (1 · cos x + x(− sin x))(x2 + 1) − (x cos x)2x =a dx x2 + 1 (e) We can use the chain rule, but logarithmic differentiation is (arguably) easier. p h(x) = 3 (x + 1)(x − 2)(x + 7)2 hp i ln [h(x)] = ln 3 (x + 1)(x − 2)(x + 7)2 1 ln [h(x)] = ln (x + 1)(x − 2)(x + 7)2 3 1 ln [h(x)] = [ln(x + 1) + ln(x − 2) + 2 ln(x + 7)] 3 1 0 1 1 1 1 h (x) = + +2 h(x) 3 x+1 x−2 x+7 1 1 2 1 0 + + h (x) = h(x) 3 x+1 x−2 x+7 1p 1 1 2 3 0 h (x) = (x + 1)(x − 2)(x + 7)2 + + 3 x+1 x−2 x+7 (f) f (x) = tan10 (3x) 10 f (x) = tan(3x) 9 f 0 (x) = 10 tan(3x) · sec2 (3x) · 3 (g) p 5 sec(tan x) 1/5 y = sec(tan x) y= −4/5 dy 1 = sec(tan x) · sec(tan x)tan(tan x) · sec2 x dx 5 (h) g(t) = g 0 (t) = (t4 1 + 1)6 + 1 [(t4 + 1)6 + 1] · 0 − 1 · [6(4t + 0)5 + 0] [(t4 + 1)6 + 1]2 (i) h(t) = sin(sin(sin t)) h0 (t) = cos(sin(sin t)) · cos(sin t) · cos t (j) Because the power rule only words for xconstant , we have to use logarithmic differentiation. h(x) = xx 2 2 ln[h(x)] = ln[xx ] ln[h(x)] = x2 ln x 1 0 1 h (x) = 2x ln x + x2 h(x) x 0 h (x) = h(x)(2x ln x + x) 2 h0 (x) = xx (2x ln x + x) (k) Whenever we have x in both the base and the exponent, we use logarithmic differentiation to take the derivative. f (x) = (tan(2x))x ln[f (x)] = ln[(tan(2x))x ] ln[f (x)] = x ln(tan(2x)) 1 1 0 f (x) = 1 · ln(tan(2x)) + x · · sec2 (2x) · 2 f (x) tan(2x) 2x 0 f (x) = f (x) ln(tan(2x)) + sin(2x) cos(2x) 2x 0 x f (x) = (tan(2x)) ln(tan(2x)) + sin(2x) cos(2x) (l) √ y = cos(x 7 − x2 ) √ √ dy 1 2 −1/2 2 2 = − sin(x 7 − x ) · 1 · 7 − x + x (7 − x ) · (−2x) dx 2 (m) f (t) = k(t3 − tan t)3 f 0 (t) = k 3(t3 − tan t)2 · (3t2 − sec2 t) (n) g(x) = ex ln x g 0 (x) = ex ln x + ex 1 x 2 Implicit Derivatives (a) x2 + y 2 = r 2 d 2 d 2 (x + y 2 ) = (r ) dx dx dy 2x + 2y =0 dx dy x =− dx y (b) √ 1 x + √ = 4x y d √ 1 d (4x) x+ √ = dx y dx 1 dy 1 √ − p =4 2 x 2 y 3 dx r dy y3 =4 dx x (c) √ xy + x + y = 5 √ d √ d xy + x + y = (5) dx dx dy 1 dy 1 y+x + √ 1+ =0 √ 2 xy dx 2 x+y dx r r 1 y x dy 1 1 dy + +√ +√ =0 2 x y dx x+y x + y dx √ dy =− dx r x2 y + xy (d) x y + = xy y x d x y d + = (xy) dx y x dx dy dy y − x dx −y x dx dy + =x +y 2 2 y x dx x2 y 3 − x2 y + y 3 dy =− 3 2 dx x y − xy 2 + x3 (e) sin(3x) = cos(2y) d d sin(3x) = cos(2y) dx dx 3 cos(3x) = −2 sin(2y) − dy dx 3 cos(3x) dy = 2 sin(2y) dx (f) 2x (x2 + y 2 )1/2 = 11 − 2 (x + y 2 )1/2 d d 2 2x 2 1/2 (x + y ) = 11 − 2 dx dx (x + y 2 )1/2 dy 1 2 2 1/2 2(x + y ) − 2x 2(x2 +y2 )1/2 (2x + 2y dx ) 1 dy (2x + 2y ) = − 2(x2 + y 2 )1/2 dx x2 + y 2 dy x3 + (2y + 2)x2 + xy 2 + 2y 3 =− dx x2 y + 2xy + y 3 (g) cot y − x sin x = 9 d d (cot y − x sin x) = (9) dx dx dy (− csc2 y) − sin x − x cos x = 0 dx dy = − sin2 y(sin x + x cos x) dx (h) √ x d d √ ((2x − y)3 ) = ( x) dx dx dy 1 3(2x − y)2 2 − = √ dx 2 x (2x − y)3 = 1 dy =2− √ dx 6 x(2x − y)2 (i) sin(x − y) = c − y d d (sin(x − y)) = (c − y) dx dx dy dy cos(x − y) 1 − =− dx dx dy cos(x − y) = dx cos(x − y) − 1 (j) x9 y 8 = ln x d 9 8 d (x y ) = (ln x) dx dx dy 1 9x8 y 8 + 8x9 y 7 = dx x dy 1 − 9x9 y 8 = dx 8x10 y 7 (k) x3 + (x2 − 1)y 2 + y 3 + 2x = 0 d d 3 (x + (x2 − 1)y 2 + y 3 + 2x) = (0) dx dx dy dy + 3y 2 +2=0 3x2 + 2xy 2 + 2(x2 − 1)y dx dx 3x2 + 2xy 2 + 2 dy =− dx 2(x2 − 1)y + 3y 2 (l) x tan y = y tan x d d (x tan y) = (y tan x) dx dx dy dy tan y + x(sec2 y) = tan x + y sec2 x dx dx dy y sec2 x − tan y = dx x sec2 y − tan x (m) √ 1 4 √ d d 1 ( x2 − 4 + ln y) = dx dx 4 x 1 dy √ + =0 x2 − 4 y dx x2 − 4 + ln y = xy dy = −√ dx x2 − 4 (n) 7ey + 7ex = x7 d d 7 (7ey + 7ex ) = (x ) dx dx dy 7ey + 7ex = 7x6 dx dy x6 − ex = dx ey 3 Higher Derivatives (a) f (x) = − ln(cos x) −1 · − sin x = tan x f 0 (x) = cos x f 00 (x) = sec2 x (b) 2 f (x) = 1 + x3/2 3 2 3 f 0 (x) = 0 + · · x1/2 = x1/2 3 2 1 f 00 (x) = x−1/2 2 (c) f (x) = x ln x − x f 0 (x) = 1 · ln x + x · f 00 (x) = 1 − 1 = ln x x 1 x (d) f (x) = x sin x f 0 (x) = 1 · sin x + x · cos x = sin x + x cos x = sin x + x cos x f 00 (x) = cos x + 1 · cos x + x · (− sin x) = 2 cos x − x sin x (e) √ x2 + 25 1 x x f 0 (x) = √ · 2x = √ =√ 2 x2 + 25 x2 + 25 x2 + 25 f (x) = 00 f (x) = 1· √ x2 + 25 − x · x2 + 25 √ x x2 +25 = (x2 25 + 25)3/2 (f) ex + e−x 1 = (ex + e−x ) 2 2 1 1 f 0 (x) = (ex + e−x (−1)) = (ex − e−x ) 2 2 1 1 f 00 (x) = (ex − e−x (−1)) = (ex + e−x ) 2 2 f (x) = (g) f (x) = e3x 2 2 2 f 0 (x) = e3x · 6x = 6xe3x = 6x e3x 2 2 2 f 00 (x) = 6e3x + 6x 6xe3x = (6 + 36x2 )e3x 2 (h) f (x) = sin(ln x) f 0 (x) = cos(ln x) · 00 f (x) = (i) x) x − sin(ln x 1 cos(ln x) cos(ln x) = = x x x − 1 · cos(ln x) sin(ln x) + cos(ln x) =− 2 x x2 Refer back to (d). f (x) = cos x + x sin x f 0 (x) = − sin x + sin x + x cos x = x cos x f 00 (x) = cos x − x sin x (j) Refer back to (d). f (x) = 2x sin x + (2 − x2 ) cos x f 0 (x) = 2 sin x + 2x cos x + (x2 − 2) sin x − 2x cos x = x2 sin x f 00 (x) = 2x sin x + x2 cos x (k) 1 f (x) = ex (sin x − cos x) 2 1 f 0 (x) = (ex (sin x − cos x) + ex (cos x + sin x)) = ex sin x = ex sin x 2 00 f (x) = ex sin x + ex cos x = ex (sin x + cos x) (l) f (x) = sec x f 0 (x) = sec x tan x = sec x tan x f 00 (x) = sec x tan x tan x + sec x sec2 x = sec x tan2 x + sec3 x (m) f (x) = x10 + 2x6 − 3x5 + x2 f 0 (x) = 10x9 + 12x5 − 15x4 + 2x f 00 (x) = 90x8 + 60x4 − 60x3 + 2 (n) x2 1 − x2 √ −x 2x 1 − x2 − x2 √1−x 2 f (x) = √ x3 − 2x x3 − 2x = − 1 − x2 (1 − x2 )3/2 (1 − x2 )3/2 3x2 − 2(1 − x2 )3/2 − (x3 − 2x) 32 (1 − x2 )1/2 x2 + 2 00 f (x) = − = (1 − x2 )3 (1 − x2 )5/2 f 0 (x) = =−
© Copyright 2026 Paperzz