Berkeley City College Homework Due:_____________ Calculus I - Math 3A - Chapter 5 - Integrals Name___________________________________ Find the value of the indicated sum. 4 1) ∑ 2 cos k = 1 π k 1) Objective: (5.1) Find Value of Sum 3 2) ∑ k = 1 3π (-1)k sin 2 2) Objective: (5.1) Find Value of Sum Write the indicated sum in sigma notation. 6 6 6 3) 6 + + + . . . + 2 3 10 3) Objective: (5.1) Write Sum in Sigma Notation 4) -(1 - 5)2 + (2 - 5)2 - (3 - 5)2 4) Objective: (5.1) Write Sum in Sigma Notation Find the value of the specified finite sum. n ∑ 5) Given a k = -6 and n ∑ b k = 5, find k = 1 k = 1 n ∑ (a k + b k ) . 5) (a k - 2bk ) . 6) k = 1 Objective: (5.1) Use Properties of Sigma Notation n ∑ 6) Given k = 1 a k = 2 and n ∑ k = 1 n ∑ b k = 7, find k = 1 Objective: (5.1) Use Properties of Sigma Notation Instructor: K. Pernell 1 Use Special Sum Formulas to find the sum. 24 7) ∑ (8k 3 - 12k 2) 7) k = 1 Objective: (5.1) Use Special Sum Formulas to Find Sum Find the area under the curve of the function on the stated interval. Do so by dividing the interval into n equal subintervals and finding the area of the corresponding circumscribed polygon. 8) f(x) = 2x2 + x + 3 from x = 0 to x = 6; n = 6 8) Objective: (5.1) Find Area Under Curve Using Finite Subintervals Find the formula and limit as requested. 9) For the function f(x) = 6x2 + 1, find a formula for the upper sum obtained by dividing the interval [0, 3] into n equal subintervals. Then take the limit as n →∞ to calculate the area under the curve over [0, 3]. 9) Objective: (5.1) Find Area Under Curve as n Approaches Infinity n Calculate the Riemann sum ∑ f(xi) △xi for the given data. i = 1 10) f(x) = x + 4; P: 2 < 2.75 < 3.25 < 4.5 < 5.5; x1 = 2, x2 = 3, x3 = 4.25, x4 = 5 10) Objective: (5.2) Find Riemann Sum from Given Data Use the given values of a and b and express the given limit as a definite integral. n 2 11) lim ∑ (3 c k - 11ck + 3) △xk , a = -5, b = 4 P →0 k = 1 11) Objective: (5.2) Express Limit of Riemann Sum as a Definite Integral 12) n lim ∑ P →0 k = 1 2 c k + 8 △xk , a = -7, b = 2 12) Objective: (5.2) Express Limit of Riemann Sum as a Definite Integral 2 Evaluate the definite integral using the definition. 5 13) 3 dx -3 ∫ 13) Objective: (5.2) Evaluate Definite Integral Using Definition 14) ∫ 4 (-2x + 8) dx 14) -8 Objective: (5.2) Evaluate Definite Integral Using Definition Solve the problem. 15) The velocity of an object is given by the velocity function v(t) = t/42. If the object is at the origin at time t = 0, find the position at time t = 20. 15) Objective: (5.2) Find Position Given Velocity Function 16) An objectʹs velocity function is graphed below. Determine the objectʹs position at time t = 40 assuming the object is at the origin at time t = 0. 16) v 6 5 4 3 2 1 20 40 60 80 100 120 t Objective: (5.2) Find Position Given Graph of Velocity Function 17) Suppose that f and g are continuous and that ∫ 11 f(x) dx = -4 and Find ∫ ∫ 7 7 11 4f(x) + g(x) dx . 7 Objective: (5.3) Evaluate Definite Integral Using Properties 3 11 g(x) dx = 9. 17) Find Gʹ(x). 18) G(x) = ∫ x4 18) sin t dt 0 Objective: (5.3) Differentiate Integral 19) G(x) = x ∫ 18t7 dt 19) 1 Objective: (5.3) Differentiate Integral 20) G(x) = ∫ x 4x + 3 dt 20) 0 Objective: (5.3) Differentiate Integral 21) G(x) = ∫ x4 cos t dt 21) 0 Objective: (5.3) Differentiate Integral 22) f(x) = ∫ 0 x 1 du u2 22) Objective: (5.3) Find Intervals of Monotonicity/Concavity 4 Answer the question. 23) Consider the function G(x) = ∫ x f(t) dt , where f(t) oscillates about the line y = 2 over the 23) 0 x-region [0, 12]. The graph is given below: y 15 10 5 1 2 3 4 5 6 7 8 9 10 11 12 t -5 -10 -15 At what values of x over this region do the local maxima of G(x) occur? Objective: (5.3) Analyze Graph of Function Evaluate the integral. 1 8 2 24) t dt ∫ 24) 0 Objective: (5.4) Evaluate Definite Integral 25) ∫ 4 2 x dx 25) 0 Objective: (5.4) Evaluate Definite Integral 26) ∫ 3π/2 14 cos x dx 26) π/2 Objective: (5.4) Evaluate Definite Integral 5 27) ∫ x7(x8 - 10)4 dx 27) Objective: (5.4) Find Integral Using Substitution 28) ∫ 10x2 4 3 + 4x3 dx 28) Objective: (5.4) Find Integral Using Substitution 29) ∫ x2 cos (x3 + 6) sin (x3 + 6) dx 29) Objective: (5.4) Find Integral Using Substitution Evaluate the definite integral. 2 30) (x + 2)3 dx 0 ∫ 30) Objective: (5.4) Evaluate Definite Integral Using Substitution 31) ∫ 6 5 (6 + x)2 0 dx 31) Objective: (5.4) Evaluate Definite Integral Using Substitution 32) ∫ 1 6 x dx 32) 16 + 3x2 0 Objective: (5.4) Evaluate Definite Integral Using Substitution 33) ∫ 2π 3 cos2 x sin x dx 33) π/3 Objective: (5.4) Evaluate Definite Integral Using Substitution 34) ∫ π (1 + cos 7t) 2 sin 7t dt 34) 0 Objective: (5.4) Evaluate Definite Integral Using Substitution 6 Solve the problem. 35) A certain company has found that its expenditure rate per day (in hundreds of dollars) on a certain type of job is given by Eʹ(x) = 6x + 9, where x is the number of days since the start of the job. Find the expenditure if the job takes 8 days. 35) Objective: (5.4) Solve Apps: Fundamental Theorem of Calculus 36) A certain object moves in such a way that its velocity (in m/s) after time t (in s) is given by V(t) = t2 + 2t + 8. Find the distance traveled during the first four seconds. 36) Objective: (5.4) Solve Apps: Fundamental Theorem of Calculus Use symmetry to help evaluate the integral. π/3 (cos x + sin x) dx 37) -π/3 ∫ 37) Objective: (5.5) Evaluate Integral Using Symmetry 38) ∫ 1 (2 + 4x + 3x2 + x3) dx 38) -1 Objective: (5.5) Evaluate Integral Using Symmetry Use the requested method to approximate the definite integral. 39) Use the method of left Riemann sum with n = 4 to approximate the value of ∫ 7 x2 dx 39) 3 Objective: (5.6) Use Riemann Sum to Approximate Integral 40) Use the method of right Riemann sum with n = 4 to approximate the value of ∫ 5 x2 dx 40) 1 Objective: (5.6) Use Riemann Sum to Approximate Integral 41) Use the method of midpoint Riemann sum with n = 4 to approximate the value of 5 x2 dx 1 ∫ Objective: (5.6) Use Riemann Sum to Approximate Integral 7 41) Express the limit as a definite integral where P is a partition of the given interval. n 2 42) lim P →0 ∑ (3 c k - 9ck + 9) △xk , [-10, 4] k = 1 42) Objective: (5.3) Express Limit of Riemann Sums as Definite Integral n 43) lim P →0 ∑ 5 c k △xk , [-5, 4] 43) k = 1 Objective: (5.3) Express Limit of Riemann Sums as Definite Integral 8 Answer Key Testname: 13FALL_CH5_PROBS π π π 1) 2 cos π + 2 cos + 2 cos + 2 cos = -1 + 2 2 3 4 2) -sin 3π 3π 3π + sin - sin = 1 2 2 2 10 ∑ 3) 6 i = 1 3 ∑ 5) 6) 7) 8) k = 1 -1 -12 661,200 221 32) 2 19 - 8 7 33) - 8 (-1)k (k - 5)2 34) 324n 3 + 486n 2 + 162n ; Area = 57 6n 3 ∫ ∫ ∫ ∫ 16) 160 17) -7 18) 4x3 sin (x4) 19) 9x3 20) 4x + 3 21) 4x3 cos (x2) 22) f(x) is increasing on (-∞, 0) and (0, ∞) f(x) is concave up on (-∞, 0) 23) ≈ 2.1, ≈8.0 1 24) 1536 32 3 26) -28 (x8 - 10) 5 27) + C 40 28) 8 21 35) $26,400 36) 69.3 m 37) 3 38) 6 39) 86 40) 54 41) 41 4 42) (3x2 - 9x + 9) dx -10 4 x5 dx 43) -5 10) 27.3125 4 11) (3x2 - 11x + 3) dx -5 2 x2 + 8 dx 12) -7 13) 24 14) 144 100 15) 21 25) 2 (sin (x3 + 6))3/2 + C 9 30) 60 5 31) 12 1 i 4) 9) 3 + 29) 2 (3 + 4x3) 5/4 + C 3 9
© Copyright 2026 Paperzz