JEE MAIN 2017
MATHEMATICS - PAPER CODE 'D'
1.
Solution : [Ans. (4)]
For no solution = 0
1 1 1
1 a 1 1( a b ) 1(1 a ) 1(b a 2 ) 0
a b 1
a – b – 1 + a + b – a2 = 0
a2 – 2a + 1 = 0
a=1
For a = 1 and b = 1, given equations become x + y + z = 1, x + y + z = 1 and x + y + z = 0. Here first two
equations are same. Equations x + y + z = 1 and x + y + z = 0 represent two parallel planes and hence given
system of equations will have no solution when a = 1 and b = 1
S = {1} which is a singleton set.
NOTE: When a = 1,
1 1 1
1 1 1
1 1 1
1 1 1 1 0 ; 2 1 1 1 0 ; 3 1 1 1 0
0 b 1
1 0 1
1 b 0
From this it is wrong to conclude that given system of equations will have infinitely many solutions for
all values of b when a = 1 and unique solution when a is not equal to 1.
This result can be used only when all the three equations are different.
2.
Solution : [Ans. (1)]
(p q) + [(– p q) q]
3.
p
q
–p
pq
–pq
T
T
F
T
T
(– p q) q
T
[(p q) (– p q) q]
T
T
F
F
F
T
F
T
F
T
T
T
T
T
T
F
F
T
T
F
T
T
Solution : [Ans. (4)]
Given, 5 (sin2x – cos4x) = 2cos2x (2cos2x – 1) + 9cos2x
5 (1 – cos2x – cos4x) = 4cos4x + 7cos2x
9 cos4x + 12cos2x – 5 = 0
cos 2 x
12 144 180 12 18 1
18
18
3
2
1
7
1
cos 4x = 2 cos2 2x – 1 = 2(2cos2. x – 1)2 – 1 2 2 1 1 2 1
3
9
9
4.
Solution : [Ans. (2)]
P(A) + P(B) – 2P(A B)
1
4
P(B) + P(C) – 2P (B C)
1
4
1
P (A) + P (C) – 2P (A C)
1
4
2[P(A) + P(B) + P(C) – P(A B) – P(B C) – P (A C)
3
4
P (A B C) = P(A) + P(B) + P(C) – P(A B) – P(B C) – P (A C) + P (A B C)
5.
Solution : [Ans. (1)]
2 1 3i
1
1
1 3i
2
1
1 2 1 2 3k
Now,
1
2
3
1
0
0 2
7
1
2 3k
3(2 – ) = 3k
1
3
1
3
3i k as 2
i,
i
2 2
2 2
6.
k = – z
Solution : [Ans. (4)]
Y
|k (k – 2) + 5 (2 + 3k) – k (– 4k)| = 56
3 1
7
8 16 16
( 2, 2)
C
5k2 + 13k + 10 = ± 56
2
5k + 13k – 46 = 0
k
L
2
5k + 13k + 66 = 0
13 169 920 13 169 1320 13 33
2
10
10
10
A (2, – 6), B (5, 2), C (– 2, 2)
Equation of perpenditure from B to AC is y 2
B (5, 2)
x=2
X
O
A (2, 6)
1
( x 5)
2
x – 2y – 1 = 0
1
Clearly 2, satisfies it.
2
7.
Solution : [Ans. (3)]
l = r
r
Given, r + 2r = 20
(+ 2) r = 20
Area of sector, y
r
...(1)
1 2
1 20
r r 2 . 2 10r r 2
2
2 r
dy
= 10 – 2r = 0
dr
l
r=5
2
1 20
2 = 25
ymax .25
2
5
8.
Solution : [Ans. (4)]
y 1 x
( y 1)2 x
Y
2
x =4y
(1,2)
(0,1)
A1
A2
y=1+ x
(2,1)
O
x+y=3
X
1
1
x2
2
x3
2 1 12 8 1 19
A1 1 x dx x x3 / 2 1
4
3
12
3
12
12
12
0
0
2
2
x2
x 2 x3
2
1 1
A 2 (3 x) dx 3 x
6 2 3
4
2
12
3
2 12
1
1
10 29 11
3 12 12
Required area A1 + A2
9.
19 11 30 5
12 12 12 2
Solution : [Ans. (2)]
P(1, 2,3)
x 1 y 2 z 3
r
PQ :
1
4
5
Let L (r + 1, 4r – 2, 5r + 3)
L
L lies on plane, 2x + 3y – 4y + 22 = 0
2 (r + 1) + 3 (4r – 2) – 4 (5r + 3) + 22 = 0
– 6r + 6 = 0
L (2, 2, 8)
Q (3, 6, 13)
r=1
Q
2
2
2
PQ 2 8 10 2 1 16 25 2 42
10. Solution : [Ans. (1)]
3/ 2
6 x. x
1 2.3 x
y tan 1
tan
1 9 x3
1 3 x3 / 2
2
2 tan 1 (3 x 3/ 2 )
dy
2
3
9
.3.
x
x g ( x) x
dx 1 9 x 3 2
1 9 x3
g ( x)
9
1 9 x3
3
11. Solution : [Ans. (1)]
(2 sin x)
dy
( y 1)cos x 0
dx
dy
( y 1)cos x
dx
(2 sin x )
y 1 2 sin x dx
log (y + 1) = – log (2 + sinx) + log C
y +1=
dy
cos x
C
2 sin x
When x = 0, y = 1
From (1), y 1
...(1)
2=
C
2
C=4
4
2 sin x
4
1
2 sin x
y
y ()
4
1
1
2 1
3
12. Solution : [Ans. (3)]
tan
x 1
4x 4
tan( )
2x 1
4x 2
tan = tan ()
B
x
C
x
A
P
4x
1 1
1
2
2
4
4
1 1 9 9
1 .
2 4 8
13. Solution : [Ans. (2)]
2 3
A
4 1
2 3 2 3 16 9
A2
4 1 4 1 12 13
48 27 24 36 72 63
(3A 2 12A)
36 39 48 12 84 51
4
51 63
adj A 84 72
14. Solution : [Ans. (2)]
9(25a 2 b 2 ) 25(c 2 3ac ) 15b(3a c)
225a 2 9b2 25c 2 75ac 45ab 15bc
225a 2 9b2 25c2 45ab 15bc 75ac 0
(15a ) 2 (3b) 2 (5c )2 15a.3b 3b 5c 15a 5c 0
Where = 15a, = 3b, = 5c
()2 + ()2 + ()2 = 0
15a = 3b = 5c = k (say)
a
k
k
k
,b , c
15
3
5
a
k
5k
3k
,b
,c
15
15
15
a, c, b are in A.P.
b, c, a are in A.P.
15. Solution : [Ans. (2)]
15 d.r's of given lines are 1, – 2, 3 and 2, – 1, – 1
d.r's of normal to plane are 6, 7, 3
Eqn of plane is 5(x – 1) + 7( y + 1) + 3(z + 1) = 0
or, 5x + 7y + 3z + 5 = 0
...(1)
Required distance of plane (1) from point (1, 3, – 7)
| 5 1 7 3 3(7) 5 |
52 7 2 32
10
83
16. Solution : [Ans. (2)]
n
In I n tan xdx
In tan n 2 x (sec 2 x 1) dx tan n 2 x sec 2 xdx tan n 2 xdx
In In 2
I6 I 4
1
a ,b 0
5
tan n 1
In2
n 1
tan n 1 x
n 1
tan 5 x
a tan 5 x bx5 c
5
17. Solution : [Ans. (2)]
5
Y
a
4
e
a = 4e
a 4
2
2
Eqn. of ellipse is
A
O (0,0)
1
b = a (1 – e ) 4 1 3
4
2
4
1
2
2
x=4
x= 4
x2 y2
1
22 3
3
Eqn. of tangent at P 1, is
2
x.1 y.3
1
4 32
x y
1
4 2
x 2y 4
3
Eqn of normal at 1, will be
2
3
2x y 2 1 0
2
2x y
or,
1
0
2
4x 2 y 1 0
18. Solution : [Ans. (2)]
Here, ae = 2. Centre of hyperbola is mid point of (2, 0) and (– 2, 0)
Centre is (0, 0)
Let the eqn. of hyperbola be
x2 y 2
1
a2 b2
...(1)
Since hyperbola (1) passes through P( 2, 3)
2
3
1
a2 b2
...(2)
But b2 = a2e2 – a2 = 4 – a2
From (2),
2
3
1
2
a
4 a2
2
3
1 [where t = a2]
t 4t
8 2t 3t 4t t 2
6
t 2 9t 8 0
a2 = 1, 8
t = 1, 8
a = 1, 2 2
But when a = 2 2, ae = 2
e=
1
2
1 (not possible)
a = 1, b2 = 4 – a2 = 3
Eqn. of hyperbola is
x2
2
1
y2
1
3
3x2 – y2 = 3
or
...(3)
Eqn of tangent at P( 2, 3) is
3.x 2 y 3 3
or 3 2 x 3 y 3
It passes through 2 2,3 3
19. Solution : [Ans. (3)]
y f ( x)
f '( x)
x
1 x2
(1 x 2 ).1 x.2 x
1 x2
(1 x 2 ) 2
(1 x 2 )2
Sign of f ' (x) i.e. of (1 – x2) in R is
f is dec
ve 1
f ( ) 0
inc
ve
dec
1 ve
f ( ) 0
f is not one-one
f ( 1)
1
1
, f (1)
2
2
1 1
Range , codomain
2 2
Hence f is onto function.
20. Solution : [Ans. (2)]
cot x cos x
Lt
Lt
( 2 x )3
h0
x
2
cot h cos h
2
2
2 2 h
3
Lt
h0
tan h sin h
sin h(1 cos h)
Lt
3
h
0
( 2 h)
8h3 .cos h
2 h
1 sin h 2sin 2 1
1
h2
1
1
Lt
.
.
1 2
.
2
8 h
cos h 8
h
4 h 2 cos0 16
7
21. Solution : [Ans. (2)]
| (a b ) c | 3
| a b || c | sin 30º 3
| a b || c | 6
...(1)
iˆ ˆj kˆ
a
b
2
1 2 2iˆ 2 ˆj kˆ
Now,
1 1 0
| a b | 2 2 ( 2)2 12 3
From (1), | c | 2
Now | c a | 3
(c a ) 2 9
c 2 a 2 2c .a 9
4 9 2c .a 9
c .a 2
22. Solution : [Ans. (2)]
Curve is y (x – 2) (x – 3) = x + 6
x=0
6y = 6
...(1)
y=1
Point where curve (1) intersects y-axis is (0, 1)
From (1), y
x6
x 5x 6
2
dy ( x 2 5 x 6).1 ( x 6)(2 x 5)
dx
( x 2 5x 6) 2
At (0, 1),
dy 6 30
1
dx
62
Eqn of normal at (0, 1) is
y 1 1( x 0)
or,
x y 1 0
...(2)
1 1
Clearly line (2) passes through ,
2 2
23. Solution : [Ans. (1)]
n(S) 11C2
11 10
55
2
E = Event that sum as well as absolute difference of the two selected numbers is a multiple of 4
= {(0, 4), (0, 8), (2, 6), (2, 10), (4, 8), (6, 10)}
8
P (E) =
n (E)
6
n (S) 55
24. Solution : [Ans. (1)]
F rounds
X (Husband) 4L, 3M
Y (Wife) 3L, 4M
No. of ladies = 7, No. of men = 7
Husband's friends
Wife's friends
M
4
3
3
4
0
3
3
0
4
1
2
2
1
4
2
4
3
4
2
L
No. of ways
L
1
3
1
0
0
M
C0 × 3C3 × 3C3 × 4C0 = 1
C1 × 3C2 × 3C2 × 4C1 = 144
C2 × 3C1 × 3C1 × 4C2 = 324
C3 × 3C0 × 3C0 × 4C3 = 16
Required no. = 485.
25. Solution : [Ans. (4)]
Required sum = (21C1 + 21C2 + 21C3 + 21C4 + ... 21C10) – (10C1 + 10C2 + 10C3 + ... 10C10) = x – y
21
21
21
Now, C0 + C1 + ... C21 = 2
...(1)
21
21
C0 + 2(21C1 + ... + 21C10) + 21C21 = 221
21
C1 + 21C2 + ... + 21C10 = 2 2
2
x = 220 – 1
21
y = 10C1 + 10C2 + ... 10C10 = 210 – 1
x – y = 220 – 210
26. Solution : [Ans. (1)]
p = Prob. of drawing a green ball in any draw
q = Prob. of not drawing a green ball
15 3
25 5
2
5
Distribution is binomial
Variance = npq 10
3 2
[n = 10]
5 5
12
5
27. Solution : [Ans. (1)]
f ( x ) ax 2 bx c
Given, f ( x y ) f ( x) f ( y ) xy
...(1)
...(2)
f (1) a b c 3
Putting x = 1, y = 1 in (2), we get
9
f (2) f (1) f (1) 1 1 3 3 1 7
Putting x = 1, y = 2 in (2), we get
f (3) f (1) f (2) 1 2 3 7 2 12
Putting x = 1, y = 3, we get
f (4) f (1) f (3) 1 3 3 12 3 18
10
Now,
f ( n)
f (1) f (2) f (3) f (4) ... f (10) 3 7 12 18 ... 10 term
n 1
Here, difference of terms form an A.P.
Let S = 3 + 7 + 12 + 18 + ... + tn
S =
3 + 7 + 12 + ...
...(3)
+ tn
...(4)
(3)–(4) 0 = 3 + 4 + 5 + 6 + ... to n term – tn
n
n
1 2 5
tn = 3 + 4 + 5 + ... to n terms [6 (n 1).1] (n 5) n n
2
2
2
2
n
Sn
n 1
1 10 2 5 10
1
5
n 2 n : S10 2 12 22 ... 102 2 (1 2 ... 10)
2 n 1
n 1
1 10 11 21 5 10 11 55 7 275 385 275 660
330
2
6
2
2
2
2
2
2
28. Solution : [Ans. (3)]
Y
AB=a
B (0,4)
A
(0, )
45º
AL=a
OA=
L
X
O
a = 4 – ;
cos 45º = 4 –
4
2
4 2 2
4 2
4 2( 2 1) 8 4 2
2 1
Radius 4 (8 4 2) 4 2 4 4
2 1
29. Solution : [Ans. (4)]
Given,
( x n 1)( x n) 10n
( x 2 (2n 1) x n(n 1) 10n
n
n 1
10
n
nx 2 x (2n 1) n 2 n 10n
n 1
nx 2 xn 2
n (n 1)(2n 1) n (n 1)
10n
6
2
nx 2 n 2 x 10n
nx 2 n 2 x
x 2 nx
n (n 1)(2n 1) n( n 1) 60 n n(2n 2 3n 1) 3n( n 1)
6
2
6
n[60 2n 2 3n 1 3n 3] n( 2n 2 62) n( n 2 31)
6
6
3
n (n 2 31)
3
n 2 31
3
3 x 2 3nx ( n 2 31) 0
n 10
3x2 30 x 69 0
n = 11
3x2 33x 90 0
[Product of roots should be integer and sum should also be integer]
x2 11x 30 0
( x 6)( x 5) 0
x = – 6, – 5
30. Solution : [Ans. (2)]
dx
1 cos x
3
4
4
1 cos x
dx = – cot x + cosec x
sin 2 x
3
dx
cos ecx cot x 4
1 cos x
2 1
2 1 2
4
ANSWERS
1.
5.
9.
13.
17.
21.
25.
29.
(4)
(1)
(2)
(2)
(2)
(2)
(4)
(4)
2.
6.
10.
14.
18.
22.
26.
30.
(1)
(4)
(1)
(2)
(2)
(2)
(1)
(2)
3.
7.
11.
15.
19.
23.
27.
(4)
(3)
(1)
(2)
(3)
(1)
(1)
4.
8.
12.
16.
20.
24.
28.
(2)
(4)
(3)
(2)
(2)
(1)
(3)
11
© Copyright 2026 Paperzz