NM – MI THI B AI PAS T P AP ER QUESTI ONS STU DENT S AR E RE QU E STED T O T AK E A P RI NT OF THI S FI L E & T HEN PR ACTI SE 01. = (2x 3 – 7) 5 . log (tan x ) y 02. = si n (4x 2 – 3) y (x 2 – 2) 4 STEP 1 : d log(tan x) STEP 1 : dx d si n (4x 2 – 3 ) = 1 . d tan x tan x dx dx = cos (4x 2 – 3) . d (4x 2 – 3) = 1 sec 2 x . dx tan x = cos(4x 2 – 3) . 8x = 1 . 1 cos 2 x si n x STEP 2 cos x = d (x 2 – 2) 4 1 dx si n x . cos x = = 4 (x 2 – 2) 3 . 2 d (x 2 – 2) dx 2 sin x . cos x = = 8x . cos(4x 2 – 3) = 4 (x 2 – 2) 3 . 2x 2 si n 2x = 8x (x 2 – 2) 3 = 2 . cosec 2x STEP 3 STEP 2 : y d (2x 3 – 7) 5 = si n (4x 2 – 3) (x 2 – 2) 4 dx dy = = 5 (2x 3 – 7) 4 . d (2x 3 – 7) dx dx = 5 (2x 3 – 7) 4 . dx 6x 2 = = = ( 2 x 3 –7 ) 5 . 2 cose c 2 8 x . (x 2 4 ) 4 . co s(4 x 2 – 3 ) . 8 x (x 2 – 2 ) 3 si n( 4 x 2 –3 ) dx = ( 2 x 3 –7 ) 5 . 2 co se c2 x + l og(ta nx ).3 0 x 2 .( 2x 3 – 7 ) 4 = ( 2 x 3 –7 ) 4 ( x 2 4 ) 4 .8 x . co s(4 x 2 – 3 ) sin (4 x 2 – 3 ) . 8 x( x 2 – 2 ) 3 (x 2 – 2) 8 ( 2 x 3 – 7 ) 5 d l og( tan x ) + l og ( ta nx ) d (2 x 3 – 7 ) 5 dx = 2 A R R A N G I N G T H E T E RM S = (2x 3 – 7) 5 . log (tan x ) dx – 2) 4 (x 2 – 2) 8 STEP 3 : dy = dx (x 2 = 30x 2 .(2x 3 – 7) 4 y ( x 2 4 ) 4 d si n(4x 2 –3) sin (4x 2 –3) d ( x 2 4 ) 3 + 8 x (x 2 – 2 ) 3 ( x 2 4 ). co s( 4x 2 – 3 ) si n(4 x 2 – 3 ) (x 2 – 2) 8 30 x 2 .( 2 x 3 – 7 ) 4 .l og( tan x ) = 2 (2 x 3 – 7 )co sec2 x + 3 0x 2 ..l o g( ta nx ) 8 x (x 2 4 ). co s(4 x 2 – 3 ) sin (4 x 2 – 3 ) (x 2 – 2) 5 1 03. y 04. = x.cos 2 x y = log (cos 5x) x 2 + 3x – 1 (1 + x) 3 STEP 1 : STEP 1 : d x.cos 2 x d log (cos 5x) dx = x dx d cos 2 x + cos 2 x . d x dx = dx 1 d cos 5x cos 5x = x.2 cos x d cos x + cos 2 x . 1 = dx 1 dx . ( sin 5x) . cos 5x = x. 2 cos x ( sin x) + cos 2 x = 1 d 5x dx . ( sin 5x) . 5 cos 5x = x . 2 sin x cos x + cos 2 x = 5 . tan 5x = cos 2 x – x.sin2x STEP 2 : STEP 2 : d (1 + x) 3 y = log (cos 5x) x 2 + 3x – 1 dx = 3 (1 + x) 2 d (1 + x) d yd x = dx ( x 2 + 3x– 1 ) d l og( cos 5 x ) l og( cos 5 x ) d (x 2 + 3 x–1 ) = 3 (1 + x) 2 dx dx ( x 2 + 3x– 1 ) 2 STEP 3 : y = ( x 2 + 3x– 1 ) ( 5 .tan 5 x ) l og (cos 5 x ) . ( 2 x+3 ) = x.cos 2 x ( x 2 + 3x– 1 ) 2 (1 + x) 3 dy = ( 1+ x ) 3 d x .co s 2 x x .co s 2 x d (1+ x ) 3 dx dx dx (1 + x)3 = = 5 ( x 2 + 3x– 1 ) .ta n 5x ( 2 x+3 ). l o g( co s5x ) ( x 2 + 3x– 1 ) 2 2 ( 1+ x ) 3 ( co s 2 x – x .si n2 x ) x.co s 2 x . 3 (1+ x ) 2 (1 + x)6 05. y = x4 + 4x 8 + sinx A R R A N G I N G T H E T E RM S = dy = (8 + sinx) d (x 4 + 4 x ) (x 4 + 4 x ) d (8+si n x) ( 1+ x ) 3 ( co s 2 x – x .si n2 x ) 3( 1+ x ) 2 .x .co s 2 x dx (1 + x)6 = ( 1+ x ) 2 dx (8 + sinx) 2 (1+ x ) (cos 2 x – x .sin 2 x ) 3 x .cos 2 x = (8 + sin x)(4x 3 + 4 x .log 4 ) + (x 4 + 4 x ).cosx (1 + x)6 = dx (8 + sin x) 2 ( 1+ x ) ( cos 2 x – x .si n2 x ) 3x .cos 2 x (1 + x)4 2 06. y = log (si ne x ) + 07. 5 + x 6 . secx sec 3 x = e 4 x .(1+x) 5 STEP 1 : STEP 1 : d log (si ne x ) d sec 3 x dx = y = 3sec 2 x . d sec x dx dx d sin e x 1 si n e x = 3sec 2 x . sec x . tanx dx = 3sec 3 x.tan x = 1 . cos ex si n e x = . d dx STEP 2 : d e 4 x .( 1+x ) 5 . cos e x . e x 1 dx si n e x = = e x . cot e x = dx ( 1+ x ) 5 . d e 4 x dx e 4 x . 5( 1+x ) 4 d ( 1+ x ) + (1+x ) 5 . e 4 x d 4 x dx = e 4 x . 5( 1+x ) 4 + ( 1+ x ) 5 . e 4 x . 4 = 5 .e 4 x . ( 1+x ) 4 + 4 .e 4 x . ( 1+x) 5 = e 4 x . ( 1+ x ) 4 5 + 4 .( 1+ x ) = e 4 x . ( 1+ x ) 4 (9 + 4 x ) d sec x + sec x d 5 + x 6 dx = + dx 5 + x 6 . sec x = 5 + x6 . e 4 x . d (1+ x ) 5 dx STEP 2 : d x ex dx 5 +x 6 . se cx .ta nx + se cx 1 2 5 +x 6 d (5+ x 6 ) dx STEP 3 : = 5 +x 6 . se cx .ta nx + se cx 1 2 6x5 dy = 5 +x 6 e 4 x .( 1+x ) 5 d sec 3 x se c 3 x d e 4 x .(1+x ) 5 dx = 5 +x 6 . se cx .ta nx + se cx dx dx e 4 x .( 1+x ) 5 3x5 2 5+x 6 = = s ec x 5 +x 6 . ta nx + e 4 x .( 1+x ) 5 3 s ec 3 x tan x sec 3 x . e 4 x . ( 1+x ) 4 ( 9+ 4 x ) 3x5 e 4 x .( 1+x ) 5 2 5+x 6 = 3 e 4 x .(1+ x ) 5 s ec 3 x tan x e 4 x .( 1+x ) 4 ( 9+ 4 x ). s e c 3 x STEP 3 : y e 4 x . 2 ( 1+ x ) 1 0 = log (si ne x ) + 5 + x 6 . secx = e 4 x .( 1+x ) 4 s e c 3 x 3 (1+ x )ta n x ( 9+4 x ) e 4 x . 2 ( 1+ x ) 1 0 dy = dx e x .cote x + s ec x 5+ x 6 . ta nx + 3x 5 5+ x 6 = s ec 3 x 3( 1+x )ta n x ( 9+4x ) e 4 x . ( 1+ x ) 6 3 08. y = si n 3 3x . e x + l og x +1 STEP 3 : x 2 +1 dy = STEP 1 dx si n 3 3x . e x d dx = si n 3 3x . d e x + ex d dx = si n 3 3x dx si n 3 3x . e x d x + e x 3 si n 2 3 x d si n 3 x dx = dx si n 3 3x . e x 1 + e x 3 si n 2 3x .co s3 x d 3 x 2 x = si n 3 3x . e x 1 dx + e x 3 si n 2 3 x . cos 3 x 3 2 x = e x .si n 3 3 x . + 9 e x si n 2 3x . co s 3x 2 x = e x .si n 2 3 x si n 3x + 9 . cos 3 x 2 x STEP 2 : d l og x 2 +1 dx = d x+1 l og ( x+ 1 ) l og x2+1 dx = d l og ( x+ 1 ) l og ( x 2 + 1 ) 1 2 dx = = d l og ( x+ 1 ) 1 dx 2 1 d ( x+ 1 ) x +1 d x = 1 x +1 = 1 x +1 1 2 1 1 2 x 2 +1 l og ( x 2 + 1 ) 1 d (x2+1) x 2 +1 dx 2x x x 2 +1 4 e x .si n 2 3 x si n3 x + 9 co s3 x + 1 2 x x +1 x x 2 +1
© Copyright 2026 Paperzz