SHEET 20 TRIGONOMETRIY (COLLECTION # 1) Single Correct Type cos A cos C + cos(A + B) cos(B + C) Que. 1. If A + B + C = 180o then cos A sin C − sin(A + B)cos(B + C) simplifies to (a) − cot C (b) 0 (c) tan C (d) cot C (code-V1T2PAQ2) Que. 2 Let 3a = 4, 4b = 5,5c = 6, 6d = 7, 7e = 8 and 8f = 9. The value of product (abcdef), is (a) 1 (b) 2 (c) 6 (d) 3 (code-V1T2PAQ3) (d) cos ec15o (code-V1T2PAQ4) Que. 3. Which of the following numbers is the largest ? (a) cos15ο (c) sec15o (b) tan 60 o sin α − sin γ Que. 4. If α + γ = 2β then the expression simplifies to cos γ − cos α (a) tan β (b) − tan β Que. 5. If A = 110o then (a) tan A (code-V1T2PAQ6) (c) cot β (d) − cot β (c) cot A (d) – cot A (code-V1T4PAQ2) (d) 776 (code-V1T4PAQ4) 1 + 1 + tan 2 2A equals tan 2A (b) – tan B Que. 6. Minimum value of y = 256sin 2 x + 324 cos ec2 x ∀ x ∈ R is (a) 432 (b) 504 Que. 7. If A = 320o then (a) tan A 2 −1 + 1 + tan 2 A is equal to tan A (b) − tan (c) 580 x A 2 (code-V1T5PAQ1) (c) cot x x A 2 (d) − cot A 2 x Que. 8. The product cos . cos . cos ....... cos is equal to 2 4 8 256 sin x (a) 128sin x 256 (b) sin x 256sin x 256 sin x (c) 128sin x 128 (d) (code-V1T5PAQ3) sin x 512sin x 512 Que. 9. In a triangle ABC∠A = 60o , ∠B = 40o and ∠C = 80o. If P is the centre of the circumcircle of triangle ABC with radius unity, then the radius of the circumcircle of triangle BPC is (code-V1T5PAQ5) (a) 1 (b) 3 (c) 2 (d) 3 2 Que. 10. In a triangle ABC if angle C is 90o and area of triangle is 30, then the minimum possible value of the hypotenuse c is equal to (code-V1T5PAQ9) (a) 30 2 (b) 60 2 (c) 120 2 Que. 11. Which one of the following relations does not hold good ? (a) sin π 13π 1 sin =− 10 10 4 (c) 4 ( sin 24o + cos 6o ) = 15 + 3 (b) sin (d) 2 30 (code-V1T5PAQ13) π 13π 1 + sin =− 10 10 2 (d) sin 2 72o − sin 2 60o = 5 −1 4 Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 1 of A - 34 Que.12. With usual notations, in a triangle ABC, a cos ( B − C ) + b cos ( C − A ) + c cos ( A − B ) is equal to (a) abc R2 abc 4R 2 (b) (c) 4abc R2 (d) abc 2R 2 (code-V1T5PAQ15) Que. 13. General solution of the equation, 2sin 2 x + sin 2 2x = 2, is (a) ( 2n + 1) π 4 (b) nπ ± π 4 (c) nπ ± π 2 (code-V1T5PAQ16) π 4 (d) nπ ± ∪ nπ ± π 2 Que. 14. In a triangle ABC, ∠A = 60o and b : c = 3 + 1: 2 then ( ∠B − ∠C ) has the value equal to (a) 15o (b) 30o (c) 22.5o (d) 45O (code-V1T5PAQ17) Que. 15. If the two roots of the equation, x 3 − px 2 + qx − r = 0 are equal in magnitude but opposite sign then (a) pr = q (b) qr = p 2 Que. 16. The equation, sin θ − (a) no root (c) pq = r (d) pq + r = 0 4 4 = 1− 3 has sin θ − 1 sin θ − 1 (code-V1T5PAQ20) 2 (b) one root (c) two roots (code-V1T5PAQ18) (d) infinite roots a 2 + b2 + c2 lies in the interval Que. 17. If a,b,c are the sides of a triangle then the expression ab + bc + ca (a) (1,2) (b) [1,2] (c) [1,2) (d) (1,2] (code-V1T5PAQ23) Que. 18. If α and β are the roots of the equation a cos 2θ + bsin 2θ = c then cos 2 α + cos 2 β is equal to (a) a 2 + ac + b 2 a 2 + b2 (b) a 2 − ac + b 2 a 2 + b2 (c) 2b 2 a 2 + c2 (d) 2a 2 b2 + c2 b Que. 19. If tan θ = , then the value of a cos 2θ + b sin 2θ is equal to a (a) a (b) b Que. 20. Let f k ( x ) = (a) (b) 2 Que. 21. In a triangle ABC, cos r 2R (code-V1T7PAQ5) (d) a 2 b sin k x + cos k x then f 4 (x) − f 6 (x) is equal to k 1 1 − cos 2 2x 4 6 (a) 2 + (c) ab 2 1 1 2 + sin 2x 12 4 (c) 1 1 − cos 2 x 3 4 (code-V1T7PAQ6) (d) 1 12 A B C + cos 2 + cos 2 equal 2 2 2 (b) 4 − 7r 2R (c) 2 + (code-V1T5PAQ24) r 4R (code-V1T7PAQ7) (d) 3 4r + 1 4 R where r and R have their usual meaning. Que. 22. A cricle is inscribed in a triangle ABC touches the side AB at D such that AD = 5 and BD = 5 and BD = 3. If ∠A = 60o then the length of BC equals [Advise - Que. of properties of triangle but tru by 2D.] (a) 9 (b) 120 13 (c) 12 (d) 13 (code-V1T7PAQ8) Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 2 of A - 34 Que. 23. If in a trianlge ABC, sin A, sin B, sin C are in A.P., then (code-V1T7PAQ10) (a) The altitudes are A.P. (b) The altitudes are in H.P (c) The medians are in G.P. (d) The medians are in A.P. Que. 24. Which of the following inequalitie(s) hold(s) true in any triangle ABC ? (code-V1T7PAQ13) (a) sin A B C 1 sin sin ≤ 2 2 2 8 2 (c) sin (b) cos A 2B 2C 3 sin sin < 2 2 2 4 Que. 25. If α = A B C 3 3 cos cos ≤ 2 2 2 8 2 (d) cos A B C 9 + cos 2 + cos 2 ≤ 2 2 2 4 π which of the following hold(s) good ? 7 (code-V1T7PAQ14) (a) tan α.tan 2α.tan 3α = tan 3α − tan 2α − tan α (b) cos ec α = cos ec 2α + cos ec 4α (c) cos α − cos 2α + cos3α has the value equal to 1/2 (d) 8cos α.cos 2α.cos 4α has the value equal to 1. Que. 26. Identify which of the following are correct ? (a) ( tan x ) n ( sin x ) > ( cot x ) n ( sin x ) (code-V1T7PAQ16) π , ∀ x ∈ 0, 4 π (b) 4n cosec x < 5n cosec x, ∀ x ∈ 0, 2 1 (c) 2 n ( cos x ) 1 < 3 n ( cos x ) π , ∀ x ∈ 0, 2 (d) 2n ( tan x ) < 2n (sin x ) , ∀ x ∈ 0, π 2 Que. 27. Which of the following is always equal to cos 2 A − sin 2 A ? (code-V1T10PAQ4) (a) sin 2A (b) cos ( A + B ) cos ( A − B) − sin ( A + B ) sin ( A − B) (c) sin ( A + B ) cos ( A − B) − cos ( A + B ) sin ( A − B) (d) cos ( A + B ) sin ( A − B) − sin ( A + B ) cos ( A − B) Que. 28. Number of values of x ∈ [ 0, π] satisfying cos 2 5x − cos 2 x + sin 4x.sin 6x = 0, is(code-V1T10PAQ5) (a) 2 (b) 3 (c) 5 (d) infinitely many sin α + sin β + sin ( α + β ) Que. 29. sin α + sin β − sin α + β (wherever difined) simplifies to ( ) (a) cot α β cot 2 2 (b) cot α β tan 2 2 (c) tan α β cot 2 2 (code-V1T10PAQ6) (d) tan α β tan 2 2 Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 3 of A - 34 Que. 30. Let A, B, C be three angles such that A + B + C = π. If tan A. tan B = csc cos A cos B π then the vlaue of cos C 6 is equal to 1 2 (a) (code-V1T12PAQ5) 1 3 (b) (c) 1 (d) 1 2 Que. 31. Which value of θ listed below leads to 2sin θ > 1 and 3cos θ < 1 ? (a) 70o (b) 140o (c) 210o (code-V1T12PAQ7) (d) 280o Que.32. In a trinalge ABC, a = 3, b = 4 and c = 5. The value of sin A + sin 2B + sin 3C equals (a) 24 25 14 25 (b) (c) 64 25 (d) None. (code-V1T13PAQ1) Que.33. Let y = ( sin x + cos ecx ) + ( cos x + sec x ) , then the minimum value of y,, ∀ x ∈ R is 2 (a) 7 2 (b) 8 (c) 9 (code-V1T13PAQ4) (d) 10 Que.34. If the equation cot 4 x − 2 cosec 2 x + a 2 = 0 has atleast one solution then, sum of all possible integral values of ‘a’ is equal to (code-V1T13PAQ5) (a) 4 (b) 3 (c) 2 (d) 0 Que.35. If θ be an acute angle satistying the equation 8cos 2θ + 8sec 2θ = 65, then value of cos θ is equal to (a) 1 8 (b) 2 3 (c) 2 3 3 (d) 3 4 Que.36. If 2sin x + 7 cos px = 9 has atleast one solution then p must be (code-V1T13PAQ8) (a) an odd integer (b) an even integer (c) a rational number (d) an irrational number Que.37. If θ ∈ ( π / 4, π / 2 ) and ∞ n =1 (a ) 3 1 ∑ tan n θ = sin θ + cos θ then the value of tan θ is (b) 2 + 1 (c) 2 + 3 (b) a 2 + b 2 − 1 (c) a 2 − b2 − 1 (code-V1T13PAQ11) (d) a 2 − b2 + 1 Que.39. The least value of x for 0 < x < π / 2, such that cos(2x) = 3 sin(2x), is (a) π 12 (b) 2π 12 (c) 3π 12 (code-V1T13PAQ10) (d) 2 Que.38. If sin x + a cos x = b then the value of a sin x − cos x is equal to (a) a 2 + b 2 + 1 (code-V1T13PAQ7) (d) (code-V1T13PAQ14) 4π 12 Que.40. Let θ ∈ [ 0, 4π] satisfying the equation ( sin θ + 2 )( sin θ + 3)( sin θ + 4 ) = 6. if the sum of all value of θ is of the form kπ then the value of ‘k’, is (code-V1T13PAQ18) (a) 6 (b) 5 (c) 4 (d) 2 Que.41. Let f (x) = a sin x + c, where a and c are real numbers and a > 0. Then f (x) < 0 ∀ x ∈ R if (a) c < −a (b) c > −a (c) − a < c < a (d) c < a (code-V1T13PAQ19) Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 4 of A - 34 Que.42. In which one of the following intervals the inequality, sin x < cos x < tan x < cot x can hold good ? π 3π 5π 3π (b) , π 4 (a) 0, 4 7π (d) , 2π 4 (c) , 4 2 (code-V1T13PAQ21) Que.43. If sin x + sin y + sin z = 0 = cos x + cos y + cos z then the expression, cos ( θ − x ) + cos ( θ − y ) + cos ( θ − z ) , for θ =∈ R is (code-V1T15PAQ1) (a) independent of θ but dependent on x, y, z (b) dependent on θ but independent of x, y, z (c) dependent on x, y, z and θ (d) independent of x, y, z and θ Que.44. In ∆ABC, AB = 1, BC = 1 and AC = 1 2. In ∆MNP, MN = 1, and ∠MNP − 2∠ABC. The side MP equals (b) 7 4 (a) 3 2 9 Que.45. The sum ∑ sin n =1 2 (c) 2 2 (d) 7 2 nπ equals 18 (a) 5 (code-V1T15PAQ6) (b) 4 Que.46. Let area of a triangle ABC is (code-V1T15PAQ5) (c) ( ) 5 +1 3 −1 , b = 2 and c = 2 ( (d) 3 5 ) 3 − 1 and ∠A is acute. The measure of the angle C is (code-V1T15PAQ10) (a) 15o (b) 30o (c) 60o (d) 75o Que.47. If the inequality sin 2 x + a cos x + a 2 > 1 + cos x holds for any x ∈ R then the largest negative intergral value of ‘a’ is (code-V1T18PAQ2) (a) – 4 (b) – 3 (c) – 2 a 1 (d) – 1 n Que. 48. The value of the expression sin . + ∑ cos ( ka ) , is 2 2 k =1 1 1 sin n − a 2 2 (a) 1 sin n + 1 a (b) (c) sin ( ( n + 1) a ) (b) cos n ( a ) 2 2 (code-V1T18PAQ3) Que. 49. Suppose ABC is a triangle with 3 acute angle A,B and C. The point whose coordinates are ( cos B − sin A,sin B − cos A ) can be in the (code-V1T18PAQ4) (a) first and 2nd quadrant (b) second the 3rd quadrant (c) third and 4th quadrant (d) second quadrant only Que. 50. Number of solution of the equation, sin 4 x − cos 2 x sin x + 2sin 2 x + sin x = 0 is 0 ≤ x ≤ 3π, is (a) 3 (b) 4 (c) 5 (d) 6 (code-V1T19PAQ3) Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 5 of A - 34 Que. 51. Let α, β and γ be the angles of a triangle with 0 < α < π π and 0 < β < , satisfying 2 2 sin 2 α + sin 2 β = sin γ, then (a) γ ∈ ( 0,30ο ) (code-V1T20PAQ3) (b) γ ∈ ( 30ο , 60o ) (c) γ ∈ ( 60ο ,90o ) (d) γ = 90o Que. 52. Let L and M be the respective intersections of the internal and external angle bisectors of the triangle ABC at C and the side AB produced. If CL = CM, then the value of ( a 2 + b 2 ) is (where a & b have their usual meanings) (a) 2R2 (code-V2T1PAQ4) (b) 2 2 R 2 (c) 4R 2 (d) 4 2 R 2 Que. 53. In a triangle ABC, if A − B = 120o and R = 8r where R and r have their usual meaning then cos C equals (a) 3/4 (b) 2/3 (c) 5/6 (d) 7/8 (code-V2T3PAQ9) Que. 54. The system of equations (code-V2T5PAQ13) x − y cos θ + z cos 2θ = 0 − x cos θ + y − z cos θ = 0 . x cos 2θ − y cos θ + z = 0 has non trivial solution for θ equals (b) nπ + (a) nπ only, n ∈ I. (c) ( 2n − 1) π only, n ∈ I. 2 1 π only, n ∈ I. 4 (d) all value of θ 1 1 1 a −1 + tan −1 + tan −1 + tan −1 is expressed as a rational Que. 55. If tan tan in lowest form ( a + b ) has b 2 3 4 5 the value equal to (code-V2T8PAQ1) (a) 19 (b) 27 (c) 38 (d) 45 Que. 56. A sector OABO of central angle θ is constructed in a circle with centre O and of radius 6. The radius of the circle that is circumscribed about the triangle OAB, is (code-V2T8PAQ7) (a) 6 cos θ 2 (b) 6 sec θ 2 θ (c) 3 cos + 2 2 (d) 3sec θ 2 Que. 57. Let s, r, R respectively specify the semiperimeter, inradius and circumradius of a triangle ABC. Then ( ab + bc + ca ) in terms of s, r and R given by (a) sr + rR + Rs (b) R 2 + r 2 + rs (c) s 2 + R 2 + 2rs (code-V2T8PAQ8) (d) r 2 + s 2 + 4Rr Que. 58. The value of the expression (1 + tan A )(1 + tan B ) when A = 20o and B = 25o reduces to (a) prime number (b) composite number (c) irrational number (d) rational which is not an integer. (code-V2T13PAQ5) Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 6 of A - 34 Que. 59. The least value of the expression (a) 1 (b) 2 cot 2x − tan 2x π in 0, equals 8 5π 1 + sin − 8x 2 (c) 4 (code-V2T13PAQ11) (d) none. Que. 60. The value of x satisfying the equation sin ( tan −1 x ) = cos ( cos −1 (x + 1) ) is (a) 1 2 (b) − 1 2 (c) (code-V2T13PAQ22) (d) No finite value 2 −1 Que. 61. Which one of the following quantities is negative ? (code-V2T13PAQ23) (a) cos ( tan −1 (tan 4) ) (b) sin ( cot −1 (cot 4) ) (c) tan ( cos −1 (cos 5) ) (d) cot ( sin −1 (sin 4) ) Que. 62. The product of all real values of x satisfying the equation 2x 2 + 10 x + 4 2 − 81 x sin −1 cos 2 = cot cot −1 x +5 x +3 9x (a) 9 (b) – 9 (code-V2T13PAQ29) π + is 2 (c) – 3 (d) – 1 2π −1 x − 1 Que. 63. Product of all the solution of the equation tan −1 2x , is = + cot 2 x −1 2x 3 (a) 1 (b) –1 (c) 3 (a) 1 a − b + c − d where a, b, c, d ∈ N and ad is equal to bc (b) 2 (code-V2T14PAQ4) (d) − 3 Que. 64. If the value of tan ( 37.5o ) can be expressed as ( a > b > c > d ) then the value of 2 (code-V2T14PAQ13) (c) 3 (d) 4 Que. 65. If the minimum value of expression y = ( 27 ) cos x + ( 81) sin x can be expressed in the form where a, b ∈ N and are in their lowest term then the value of ( a + b ) equals a/b (code-V2T17PAQ10) Que. 66. Let f (x) = sin x + cos x + tan x + arc sin x + arc cos x + arc tan x. If M and m are maximum and minimum values of f(x) then their arithmetic mean is equal to (code-V2T18PAQ3) (a) π + cos1 2 (b) π + sin1 2 (c) π + tan1 + cos1 4 (d) π + tan1 + sin1 4 Que. 67. The sum ∑ cos rπ equals 2009 r =1 (a) 0 3π Que. 68. tan 8 (code-V2T19PAQ1) 6 (b) 1 2009 3π + − cot 8 (c) 3 +1 2 2 (d) 2+ 3 2 2009 is (a) even integer (c) rational which is not an integer (code-V2T19PAQ3) (b) odd integer (d) irraional Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 7 of A - 34 Comprehesion Type # 1 Paragraph for Q. 1 to Q. 3 Let r and R denote the radii of the incircle and the circumcircle of the triangle ABC with sides a, b, c and a + b + c = 2s. Also ∆ denotes the area of the trianlge. (code-V1T16PAQ7,8,9) 1. The value of the product A ∏ cot 2 equals cyclic ABC ∆ (b) 2 s r2 (a) ∆ 2. The vlaue of the sum R (a + b + c) (c) A B ∏ cot 2 cot 2 2 abc (d) r s (d) 4R r equals cyclic A,B,C (a) 3. R + 4r r (b) 4R + r r 4R + r R (c) Let f (x) = 0 denotes a cubic whose roots are cot A B C , cot , cot . If the triangle ABC is such that one 2 2 2 of its anlge is 90o then which one of the following holds good ? (a) r + 2R = s (b) 3r + 2R = s + 2 (c) 1 + r + 4R = 2s (d) 4r + R = s # 2 Paragraph for Q. 4 to Q. 6 Let ABC be an acute triangle with orthocenter H.D,E,F are the feet of the perpendiculars from A,B,and C on the opposite sides. Also R is the circumradius of the triangle ABC. (code-V1T18PAQ6,7,8) Given ( AH )( BH )( CH ) = 3 and ( AH ) + ( BH ) + ( CH ) = 7 2 4. The ratio (a) 5. 2 3 14R 2 has the value equal to (b) 3 7R (c) 7 3R (d) 14 3R The product ( HD )( HE )( HF ) has the value equal to (a) 6. ∏ cos A ∑ cos A 2 9 64R 3 (b) 9 8R 3 (c) 8 9R 3 (d) 9 32R 3 (c) 3 2 (d) 5 2 The value of R is (a) 1 (b) 31/ 3 Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 8 of A - 34 Assertion & Reason Type In this section each que. contains STATEMENT-1 (Assertion) & STATEMENT-2(Reason).Each question has 4 choices (A), (B), (C) and (D), out of which only one is correct. Bubble (A) STATEMENT-1 is true, STATEMENT-2 is True; STATEMENT-2 is a correct explanation for STATEMENT-1. Bubble (B) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1. Bubble (C) STATEMENT-1 is True, STATEMENT-2 is False. Bubble (D) STATEMENT-1 is False, STATEMENT-2 is True. Que. 1. Statement - 1 : (code-V1T4PAQ8) In a triangle ABC if A is obtuse then tan B tan C > 1 because Statement - 2 : In any triangle ABC, tan A = tan B + tan C tan B tan C − 1 Que. 2. Statement - 1 : (code-V1T4PAQ9) cos (10 ) and cos ( −10 ) both are negative and have the same value. c c because Statement - 2 : cos θ = cos ( −θ ) and the real numbers (10 ) and ( −10 ) both lie in the third quadrant. c c Que. 3. Let α, β and γ satisfy 0 < α < β < γ < 2π and cos ( x + α ) + cos ( x +β) + cos ( x + γ ) = 0 ∀x ∈ R γ −α = Statement - 1 : 2π . 3 (code-V1T6PAQ1) because cos α + cos β + cos γ = 0 and sin α + sin β + sin γ = 0. Statement - 2 : Que. 4. If A + B + C = π then Statement - 1 : (code-V1T6PAQ3) cos 2 A + cos 2 B + cos 2 C has its minimum value 3 . 4 because Statement - 2 : 1 8 Maximum value of cos A cos Bcos C = . Que. 5. Let f (x) = 3sin 2 x + 4sin x cos x + 4 cos 2 x, x ∈ R. Statement - 1 : Greatest and least values of f (x) ∀ x ∈ R are (code-V1T8PAQ11) 7 + 17 7 − 17 and respectively.. 2 2 because Statemtnt 2 : a + b − a 2 + b 2 + c2 − 2ab a + b + a 2 + b 2 + c 2 − 2ab ≤ a sin 2 x + b sin x cos x + c cos 2 x ≤ 2 2 where a, b, c ∈ R Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 9 of A - 34 Que. 6. Statement - 1 : tan 6π 5π π 6π 5π π − tan − tan = tan .tan . tan 7 7 7 7 7 7 (code-V1T10PAQ7) because Statement - 2 : If θ = α + β, then tan θ− tan α − tan β = tan θ.tan α.tan β. Que. 7. Consider the following statements Statement - 1 : (code-V1T12PAQ8) In any right angled triangle ABC, sin 2 A + sin 2 B + sin 2 C = 2 because Statement - 2 : Que. 8. Statement-1: = n cot In any triangle ABC, sin 2 A + sin 2 B + sin 2 C = 2 − 2 cos A cos B cos C ] In any triangle A B C n cot + co t + c o t 2 2 2 ABC A B C + n cot + n cot 2 2 2 because Statement - 2 : Que. 9. Statement - 1 : (code-V1T14PAQ5) ( ( n 1 + 3 + 2 + 3 )) = n1 + n General solution of ( 3 + n 2 + 3 ) tan 4x − tan 2x nπ π = 1 is x = + ,n ∈I 1 + tan 4x tan 2x 2 8 because Statement - 2 : Que. 10. Statement - 1 : (code-V1T18PAQ11) π 4 General solution of tan α = 1 is α = nπ + , n ∈ I. The equation sin ( cos x ) = cos ( sin x ) has no real solution (code-V1T19PAQ10) because Statement - 2 : sin x ± cos x is bounded in − 2, 2 Que. 11. Statement 1: In any triangle ABC, cot A + cot B + cot C > 0 (code-V2T7PAQ10) because Statement 2: Minimum value of cot A + cot B + cot C in any triangle ABC is 1. Que. 12. Let P be the point lying inside the acute triangle ABC such that angles sutended by each side at P is 120o. Equilateral triangles AFB, BDC,CEA are constructed outwardly on sides AB, BC, CA of ∆ABC Statement 1: Lines AD, BE, CF are concurrent at P. (code-V2T18PAQ8) because Statement 2: P is the radical centre of circumcircles of triangles ABF, BDE, CEA Que. 13. Let ABC be an acute triangle whose orthocentre is at H. Altitude from A is produced to meet the circumcircle of the triangle ABC at D. (code-V2T19PAQ7) Statement 1: The distange HD = 4R cos Bcos C where R is the circumradius of the triangle ABC. because Statement 2: Image of orthocentre H in any side of an acute triangle lies on its circumcircle. Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 10 of A - 34 More than One May Correct Type Que. 1. If 2cos θ + 2 2 = 3sec θ where θ ∈ ( 0, 2π ) then which of the following can be correct ? 1 2 (a) cos θ = (b) tan θ = 1 (c) sin θ = − 1 2 (d) cot θ = −1 (code-V1T2PAQ9) Que. 2 Which of the following real numbers when simplified are neither terminating nor repeating decimal ? (a) sin 75o.cos 75o (b) log 2 28 (d) 8−(log (c) log 3 5.log 5 6 ) 27 3 (code-V1T2PAQ10) Que. 3. Suppose ABCD (in order) is a quadrilateral inscribed in a circle. Which of the following is/are always True ? (code-V1T2PAQ11) (a) sec B = sec D (b) cot A + cosC = 0 (c) cosecA = cosecC (d) tan B + tan D = 0 Que. 4. which of the following quantities are rational ? (code-V1T4PAQ15) 9π 4 π sec 10 5 11π 5π sin 12 (b) cos ec π (d) 1 + cos 1 + cos 1 + cos 9 9 9 (a) sin 12 π 4 4 (c) sin + cos 8 8 2π 4π 8π Que. 5. In a triangle ABC, a semicircle is inscribed, whose diameter lies on the side c. If x is the length of the angle bisector through angle C then the radius of the semicircle is (code-V1T6PAQ6) abc (a) 4R 2 (sin A + sin B) (c) x sin C 2 (b) ∆ x (d) 2 s(s − a)(s − b)(s − c) s Que. 6. The possible value(s) of x satisfying the equation sin x − 3sin 2x + sin 3x = cos x − 3cos 2x + cos 3x, is/ are. (code-V1T6PAQ9) (a) − 7π 8 (b) − π 8 (c) π 8 (d) π 4 Que. 7. In which of the following sets the inequality sin 6 x + cos 6 x > 5 holds good ? (code-V1T6PAQ12) 8 π π (a) − , 8 8 3π 5 π , (b) 8 8 π 3π (c) , 4 4 7 π 9π (d) , 8 8 Que. 8. The value of x satisfying the equation cos ( n x ) = 0, is (a) e π / 2 (b) e−π / 2 (c) eπ (code-V1T10PAQ9) (d) e3π / 2 Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 11 of A - 34 Que. 9. Which of the following do/does not reduce to unity ? (code-V1T10PAQ11) sin (180o + A ) cot ( 90o + A ) cos ( 360o − A ) cos ecA (a) tan 180o + A . tan 90o + A . sin ( − A ) ( ) ( ) sin ( −A ) (b) tan 180o + A ( ) (c) − tan ( 90o + A ) cot A + cos A sin ( 90o + A ) sin 24o cos 6o − sin 6o sin 66o sin 21o cos 39o − cos 51o sin 69o cos ( 90o + A ) sec ( − A ) tan (180o − A ) (d) sec 360o + A sin 180o + A cot 90o − A ( ) ( ) ( ) Que. 10. Which of the following identities wherever difined hold(s) good ? (code-V1T10PAQ12) (a) cot α − tan α = 2cot 2α (b) tan ( 45o + α ) − tan ( 45o − α ) = 2 cos ec2α (c) tan ( 45o + α ) + tan ( 45o − α ) = 2sec2α (d) tan α + cot α = 2 tan 2α. Que. 11. Let α, β and γ are some angles in the1st quadrant satisfying tan ( α + β ) = 15 17 and cos ecγ = then 8 8 which of the following holds good ? (code-V1T14PAQ7) (a) α + β + γ = π (b) cot α.cot β.cot γ = cot α + cot β + cot γ (c) tan α + tan β + tan γ = tan α.tan β. tan γ (d) tan α. tan β + tan β. tan γ + tan γ. tan α = 1 Que. 12. Which of the following statements are always correct ? (where Q denotes the set of rationals) ⇒ (a) cos 2θ ∈ Q and sin 2θ ∈ Q ⇒ (b) tan θ ∈ Q ⇒ (code-V1T14PAQ8) sin 2θ, cos 2θ and tan 2θ ∈ Q (if defined) ⇒ (c) If sin θ ∈ Q and cos θ ∈ Q (d) if sin θ ∈ Q tan θ ∈ Q (in difinde) tan 3θ ∈ Q (if defined) cos 3θ ∈ Q Que. 13. Given that sin 3θ = sin 3α, then which of the following angles will be equal to cos θ ? π 3 (a) cos + α π 3 (b) cos − α 2π + α 3 (c) cos ( ) 2π − α (code-V1T14PAQ9) 3 (d) cos Que. 14. If the quadratic equation ( cos ec2 θ − 4 ) x 2 + cot θ + 3 x + cos 2 3π = 0 holds true for all real x then 2 the most general values of θ can be given by (a) 2nπ + 11π 6 (b) 2nπ + 5π 6 (c) 2nπ ± (code-V1T15PAQ12) 7π 6 (d) nπ ± 11π 6 Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 12 of A - 34 Que. 15. If α and β are two different solution of a cos θ + b sin θ = c, then which of the following hold(s) good ? (code-V1T15PAQ13) (a) sin α + sin β = (c) cos α cos β = 2bc 2 a + b2 (b) sin α sin β = 2ac 2 a + b2 c2 − a 2 a 2 + b2 (d) cos α cos β = c2 + a 2 a 2 + b2 Que. 16. If in a triangle ABC, cos 3A + cos 3B + cos 3C = 1, then (code-V1T15PAQ14) (a) ∆ABC is a right angled triangle. (b) ∆ABC is an obtuse angle triangle (c) ∆ABC is an acute angled triangle (d) Inradius ‘r’ of the triangle ABC is either 3 ( s − a ) or Que. 17. The value of x in (0, π / 2) satisfying the equation, (a) π 12 (b) 5π 12 (c) 3 ( s − b ) or 3 (s − c ). 3 −1 3 +1 + = 4 2 is (code-V2T2PAQ11) sin x cos x 7π 24 (d) 11π 36 Que. 18. In a triangle ABC, 3sin A + 4cos B = 6 and 3cos A + 4sin B = 1 then ∠C can be (code-V2T8PAQ12) (a) 30o (b) 60o (c) 90o (d) 150o Que. 19. If cos 3θ = cos 3α then the value of sin θ can be given by (a) ± sin α π (b) sin ± α 3 2π (c) sin + α 3 (code-V2T15PAQ9) 2π (d) sin − α 3 Que. 20. Let ABC be a triangle with AA1, BB1, CC1 as their medians and G be the centriod. If the points A, C1, G, B1 be concyclic then which one of the following relations do/does not hold good ? (code-V2T19PAQ10) (a) 2a 2 = b 2 + c2 (b) 3b 2 + c 2 + a 2 (c) 4c 2 + a 2 + b 2 (d) 3a 2 + b 2 + c 2 Match Matrix Type Que. 1. Match the general solution of the trigonometric equation given in Column - I with their corre(code-V1T14PBQ1) sponding entries given Column - II. Column - I Column - II A. cos 2 2x + cos 2 x = 1 P. π π x = nπ+ ∪ nπ+ ,n ∈ I. 4 6 B. cos x = 3 (1 − sin x ) Q. x= C. 1 + 3 tan 2 x = 1 + 3 tan x R. π x = ( 2n − 1) , n ∈ I. 6 D. tan 3x − tan 2x − tan x = 0 S. π π x = 2nπ+ ∪ 2nπ + ,n ∈ I. 2 6 ( ) nπ ,n ∈I 3 Address : Plot No. 27, III- Floor,Subjective Near Patidar Studio, Type Above ( Up Bond to 4 Classes, digit) Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 13 of A - 34 Que. 1. The expression 2cos π 9π 7π 9π .cos + cos + cos simplifies to an integer P. Find the value of P.. 17 17 17 17 (code-V1T1PAQ1) sin ( α + β ) − 2sin α + sin ( α − β ) Que. 2. Show that the expression cos α + β − 2cos α + cos α − β is independent of β. (code-V1T1PAQ2) ( ) ( ) Que. 3. If the expression k. sin θ.sin 2θ + sin 3θ sin 6θ + sin 4θ sin13θ = tan kθ, where k ∈ N. Find the value of sin θ cos 2θ + sin 3θ cos 6θ + sin 4θ cos13θ (code-V1T1PAQ4) 8 Que. 4. If y = cos x x π π − sin 8 . Find the value of y when x = and also when x = . (code-V1T3PAQ4) 2 2 4 6 Que. 5. In a trianlge ABC, given sin A : sin B : sin C = 4 : 5 : 6 and cos A : cos B : cos C = x : y : z. If the ordered pair (x, y) satisfies this, then compute the value of ( x 2 + y 2 + z 2 ) where x, y, z ∈ N and are in their lowest form. (code-V1T7PBQ2) Que. 6. Let A = cos 360o.sin 2 270o − 2cos180o.tan 225o , B = 3sin 540o.sec 720o + 2 cos ec450o − cos 3600o C = 2 sec 2 2π.cos 0c + 3sin 3 3π 5π 3π 3π − cos ec and D = tan π.cos + sec 2π − cos ec . Find the value of 2 2 2 2 A + B − C ÷ D. (code-V1T9PAQ1) Que. 7. If the value of the expression E = cos 4 x − k 2 cos 2 2x + sin 4 x, is independent of x then find the set of values of k. (code-V1T9PAQ3) Que. 8. If cot π = p + q + r + s where p, q, r, s ∈ N, find the value of ( p + q + r + s ) . (code-V1T9PAQ5) 24 Que. 9. Let L denotes the value of the expression, sin 2θ − sin 6θ + cos 2θ − cos 6θ , when θ = 27 o sin 4θ − cos 4θ tan x tan 2x when x = 9o. tan 2x − tan x and M denotes the value of and N denotes the numerical value of the expression (wherever difined) (code-V1T9PAQ7) 1 − cos 4α 1 + cos 4α + 2 sec 2α − 1 cos ec2 2α − 1 when it is simplified. Find the value of the product (LMN). 4 5 Que. 10. If cos ( α + β ) = ;sin ( α − β ) = 5 π and α, β lie between 0 and , then find the value of tan 2β. 13 4 (code-V1T11PAQ1) Que. 11. Find the range of values of k for which the equation 2 cos 4 x − sin 4 x + k = 0, has atleast one solution. (code-V1T11PAQ3) Que. 12. Prove that, sin 3 θ + sin 3 θ + 2π 4π 3 3 + sin θ + − = − sin 3θ. 3 3 4 tan 2r −1 Que. 13. Compute the value of the sum ∑ r r =1 cos 2 (code-V1T11PAQ5) n (code-V1T11PAQ6) Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 14 of A - 34 Que. 14. If 15sin 4 α + 10 cos 4 α = 6 then find the value of 8cosec6 α + 27 sec6 α. (code-V1T15PDQ1) Que. 15. Given that x + sin y = 2008 and x + 2008cos y = 2007 where 0 ≤ y ≤ π / 2. Find the value [ x + y] . (Here [x] denotes greatest interger function) (code-V2T1PDQ2) φ 2 (θ n ) Que. 16. The sum ∑ 2 sin x.sin1[1 + sec(x − 1).sec(x + 1) ] can be written in the form as ∑ (−1) where ψ (θ n ) n =1 x=2 4 44 n φ and ψ are trigonometric functions and θ1 , θ2 , θ3 , θ4 are in degrees ∈ [0, 45]. Find ( θ1 + θ2 + θ3 + θ4 ) . (code-V2T17PDQ1) Que. 17. If the total between the curves f (x) = cos −1 (sin x) and g(x) = sin −1 (cos x) on the interval [ −7 π, 7 π] is A, find the value of 49A. (Take π = 22 / 7 ) (code-V2T17PDQ3) [SOLUTION] Single Correct Type Que. 1. (D) cos A cos C + ( − cos C )( − cos A ) cos A sin C − ( sin C )( − cos A ) Que. 2 (B) 3a ; = 4;a = log 3 4; |||1y ⇒ 2 cos A cos C = + cos C 2 cos A sin C b = log 4 etc. Hence abcdef = log 3 4; log 4 5; log 5 6.log 6 7.log 7 8.log 8 9 = log 3 9 = 2 ⇒ 2. Que. 3. (D) cos15o = 2 + 3 ≅ 3.732; cos ec15o = tan 60o = 3 ≅ 1.732; sec15o = 4 = 6 − 2 = 1.035; 6+ 2 4 = 6 + 2 = 3.86 which is largest 6− 2 Que. 4. (C) α−γ α+γ 2sin cos sin α − sin γ 2 2 = cot α + γ = cot β = cos γ − cos α α−γ α+γ 2 2sin sin 2 2 2 Que. 5. (B) 1 + 1 + tan 2A = 1 + sec 2A tan 2A tan 2A ( 2A = 220 ) o = 1 − sec 2A 1 − cos 2A = − = − tan A. tan 2A sin 2A Que. 6. (C) y = 256 ( sin 2 x + cos ec 2 x ) + 68cos ec 2 x, 256 ( (sin x − cos ecx)2 + 2 ) + 68cos ec2 x Minimum when x = Que. 7. (a) E= π π or − and minimum vlue = 512 + 68 = 580 2 2 −1 + sec A 1 − cos A A = = tan tan A sin A 2 Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 15 of A - 34 Que. 8. (B). Que. 9. (A) Let R ' be the radius of the circumcircle of triangle ABC using sine law in trianlge BPC a = 2R1 sin120o a = 2R sin 60o ................. (1) also (R = 1 given ) a = 3; form (1) Que. 10. (D) ∆ = ab ⇒ ab = 60 c = a 2 + b2 a = 2R sin 60o 1 2 R1 = ( in ∆ABC ) 2 3 1 . = 1. 3 2 also a 2 + b 2 ≥ 2ab B ∴ ∴ a + b ≥ 2ab equality occurs when a = b 2 2 A C C B Θ A minimum value of a 2 + b 2 = 2 ab = 120 = 2 30 Alternatively: b = c cos θ; c 2 |min = 120 Que. 11. (D) In (D) it should be Que 12. (A) put 1 c2 sin 2θ ∆ = c2 sin θ cos θ = = 3θ 2 4 a = csin θ ⇒ c2 = 120cos ec2θ c = 2 30 5 −1 . 8 a = 2R sin A etc. T1 = 2R sin ( B + C ) cos ( B − C ) = R [sin 2B + sin 2C] etc. E = R [sin 2B + sin 2C + sin 2C + sin 2A + sin 2A + sin 2B] = 2R ( sin 2A + sin 2B + sin 2C ) = 8R. a b c abc . . = 2. 2R 2R 2R R Que. 13. (D) where n ∈ I. sin 2 2x = 2 cos 2 x 4sin 2 x cos 2 x = 2 cos 2 x cos 2 x 1 − 2sin 2 x = 0 cos 2 x = 0 or sin 2 x = 1 2 ∴ b 3 +1 b − c 3 +1− 2 = ; = = Que. 14. (B) c 2 b+c 3 +1+ 2 now using tan B−C b−c A = cot = 2 b+c 2 ( ( x = nπ ± 3 −1 ) 3 +1 3 −1 ) 3 +1 . . π 2 or x = nπ ± π 4 1 3 3 B−C = 2− 3 ⇒ = 15o 2 3 ∴ B − C = 30o Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 16 of A - 34 Que. 15. (C) Que. 16. (D) sin 2 θ = 1 [sin θ ≠ +1] ⇒ sin θ = −1 ⇒ θ = 2nπ − π / 2 ⇒ infinite roots Que. 17. (C) In a triangle b + c > a ⇒ b + c − a > 0 ∴ a ( b + c − a ) > 0 |||1y c (a + b − c) > 0 and a ( b + c ) + b ( c + a ) + c ( a + b ) > a 2 + b 2 + c2 ∴ b (c + a − b) > 0 a2 + b2 + c2 <2 ab + bc + ca ∴ 2 ( ab + bc + ca ) > a 2 + b 2 + c2 ............(1) also forany a,b,c ∈ R a 2 + b 2 + c 2 ≥ ab + bc + ca ........(2) (equality holds if a = b = c) Que. 18. (A) Make a quadratic in cos 2θ to get cos 2α + cos 2β = ⇒ 2ac 2 cos α + cos β = 2 + 2; a + b2 ( 2 2 ∑a < 2 ∑ ab 2 a 2 + b 2 + c2 ≥1 ab + bc + ca ) form (1) and (2) 1≤ 2ac a + b2 2 a 2 + ac + b 2 cos α + cos β = a 2 + b2 2 2 b 2 2b 2 a 1 − 2 + a (1 − tan 2 θ ) 2b.tan θ a ( a 2 − b 2 ) + 2ab 2 a ( a 2 + b 2 ) a a = = = a. Que. 19. (A) 1 + tan 2 θ + 1 + tan 2 θ = b2 a 2 + b2 a 2 + b2 1+ 2 a Que. 20. (D) f 4 ( x ) − f 6 ( x ) = = 1 1 1 1 sin 4 x + cos 2 x ) − ( sin 6 x + cos 6 x ) = (1 − 2sin 2 cos 2 x ) − (1 − 3sin 2 cos 2 x ) ( 4 6 4 6 1 1 2 1 3 2 1 1 1 1 − sin 2x − 1 − sin 2x = − = . 4 2 6 4 4 6 12 Que. 21. (A) r 5 Que. 22. (D) Given A = 60o ; tan 30o = ⇒ r = 5 B r 5 now tan = = 2 3 3 3 3 1 − tan 2 ( B 2 ) 1 − ( 25 27 ) 2 1 cos B = = = = = 2 1 + tan ( B 2 ) 1 + ( 25 27 ) 521 26 26 (a = ?) 675 15 3 B 1 C Hence 15 3 sin B = sin C = sin ( A + B ) 26 b A 30o 30o 5 3 1 1 15 3 1 = 4 3 = sin C ⇒ c = a ; . + . = 16 3 2 26 2 26 52 13 sin C sin A a I r = sin A cos B + cos Asin B = D B/2 B c 3 a= 8. 3 13 . = 13. 2 4 3 Que. 23. (B) Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 17 of A - 34 Que. 24. (A,B,D) (c) ∑ sin 2 A 1 3 1 = 3 − ( cos A + cos B + cos C ) = − ( cos A + cos B + cos C ) 2 2 2 2 but [ cos A + cos B + cos C]max = 3 ∴ 2 ∑ sin 2 A 3 3 3 = − = ∴ 2 min 2 4 4 ∑ sin 2 A 3 ≥ ⇒ (c) si wrong. 2 4 a,b,c are correct and hold good in an equilateral triangle as their maximumum values. Que. 25. (A,B,C) (c) (d) (b) RHS = sin 4α + sin 2α 2sin 3α.cos α 1 = = = cos ec α ( using π = 7α ) ⇒ (b). sin 2α.sin α 4 sin 2α.sin 4α sin α Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 18 of A - 34 1 cos α + cos3α + cos5α sum of a series with constant d = 2α sum = 2 ⇒ (c) is wrong. continued product = 1 ⇒ (d) is also wrong. Que. 26. (A,B,C) (a) x = π 8, ⇒ ( tan x ) n ( sin x ) (b) x = π 6 , ⇒ 4n 2 < 5n 2 ⇒ True. (c) x = π 2, 2n 2 < 3n 2 ⇒ True. (d) x = π 4 , 2 0 > 2 − n 2 ⇒ 1 < 1 2 n 2 > 1 and ( cot x ) n ( sin x ) < 1 ⇒ True. is not correct ⇒ False. Que. 27. (B) ( cos 2 A − sin 2 B ) − ( sin 2 A − sin 2 B ) = cos 2 A − sin 2 A = cos 2A (C) sin 2B; (D) − sin 2B Que. 28. (D) (1 − sin 2 5x ) − (1 − sin 2 x ) + sin 4x sin 6x = 0 ⇒ sin 2 x − sin 2 5x + sin 4x.sin 6x = 0 − sin 6x.sin 4x + sin 4x.sin 6x = 0 which is true for all x ∈ [ 0, π] ⇒ it is indentity α +β α −β α+β α +β α −β α+β 2sin cos + 2 sin cos cos + cos 2 2 2 2 = 2 2 Que. 29. (A) α +β α −β α +β α+β α −β α+β 2sin cos − 2sin cos cos − cos 2 2 2 2 2 2 α β cos 2 2 = cot α cot β . = α β 2 2 2 sin sin 2 2 2 cos Que. 30. C. Given tan A.tan B = 2 Let y = cos A cos B cos A.cos B cos A.cos B 1 1 =− = = = =1 cos C cos(A + B) sin A sin B − cos A cos B tan A tan B − 1 2 − 1 Que. 31. B. 2sin θ > 1 ⇒ sin θ > 0 ⇒ θ ∈1st or 2nd quadrant , 3sin θ < 1 ⇒ cos θ < 0 ⇒ θ ∈ 2nd or 3rd quadrant hence θ ∈ 2nd ⇒ possible answer is (B). A Que. 32. B. E = sin A + sin 2B + sin 3C ⇒ E = 3 4 3 15 24 39 − 25 14 + 2. . − 1 = + −1 = = . 5 5 5 25 25 25 25 5 B 3 Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM 4 C Que. 33. C. y = ( sin 2 x + cos 2 x ) + 2 ( sin x cos ecx + cos x sec x ) + sec 2 x + cos ec 2 x = 5 + 2 + tan 2 x + cot 2 x = 7 + ( tan x − cot x ) + 2 ∴ y min = 9. 2 Que.34. D. cot 4 x − 2 (1 + cot 2 x ) + a 2 = 0 ⇒ cot 4 x − 2 cot 2 x + a 2 − 2 = 0 ⇒ ( cot 2 x − 1) = 3 − a 2 2 to have atleast one solution 3 − a 2 ≥ 0 ⇒ a 2 − 3 ≤ 0 ⇒ a ∈ − 3, 3 integral values −1, 0,1 ∴ sum = 0. Que.35. D. cos 2θ = t ∴ 8t + Let ⇒ t = 8 or t = Que.36. C. 1 1 1 9 3 2 2 (t = 8 is rejected, think !) ∴ cos 2θ = ; 2 cos θ − 1 = ⇒ cos θ = ⇒ cos θ = . 8 8 8 16 4 2sin x + 7 cos px = 9 is possible only if sin x = 1 cos px = 1 x = (4n + 1) Que.37. A. 8 = 65 ⇒ 8t 2 − 65t + 8 = 0 ⇒ 8t − 64t − t + 8 ⇒ 8t ( t − 8 ) − ( t − 8 ) = 0 t π 2mπ π 2mπ 4m and px = 2mπ ⇒ x = ⇒p= ( m, n,∈ I ) ∴ (4n + 1) = ∴ p ∈ rational. 2 p 2 p 4n + 1 tan θ > 1 ⇒ 0 < 1 <1 tan θ now, 1 1 1 + + + ........∞ = sin θ + cos θ 2 tan θ tan θ tan 2 θ 1 1 cos θ ⇒ tan θ = sin θ + cos θ ⇒ = sin θ + cos θ ⇒ = sin θ + cos θ 1 tan θ − 1 sin θ − cos θ 1− tan θ ⇒ cos θ = sin 2 θ − cos 2 θ = 1 − 2 cos 2 θ cos θ = Que.38. D. 1 π or cos θ = −1 (rejected) ⇒ = ⇒ tan θ = 3. 2 3 Let a sin x − cos x = k, k ≥ 0 ............... (1) also sin x + a cos x = b ............... (2) Square and add (1) and (2) Que.39. A. a 2 + 1 = k 2 + b2 ⇒ k 2 = a 2 − b2 + 1 ⇒ k = a 2 − b2 + 1. cos 2x 3 π π π − sin 2x = 0 or cos 2x.cos 2x.cos − sin 2x.son ⇒ cos 2x + = 0 2 2 3 3 3 ⇒ 2x + Que.40. B. π π π π = ; 2x = ⇒ x = . 3 2 6 12 ( sin θ + 2 )( sin θ + 3)( sin θ + 4 ) = 6 LHS sin θ = −1. ⇒ sin θ = −1 ⇒ θ = Que.41. A. ⇒ 2 cos 2 θ + cos θ − 1 = 0 ⇒ ( 2 cos θ − 1)( cos θ + 1) = 0 ≥ 6 and RHS = 6 ⇒ equality only can hold if 3π 7 π , ∴ sum = 5π ⇒ 5. 2 2 c c c a sin x + c < 0 ⇒ sin x < − ; − > sin x; − > 1; − c > a ⇒ a + c < 0 ⇒ (A) a a a Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 19 of A - 34 Que.42. A. In 2nd quadrant sin x < cos x is False (think !) In 4th quadrant cos x < tan x is False (think !) 5π 3π in 3rd quadrant, i.e. , if tan x < cot x ⇒ tan 2 x < 1 which is not correct hence A can be correct 4 2 now π sin x < cos x is true in 0, 4 and tan x < cot x is also true ∴ only the value of x for which cos x < tan x is be determined ∴ now ⇒ sin x = 2 2 cos x = tan x i.e. cos x = sin x or 1 − sin x = sin x ⇒ sin 2 x + sin x − 1 > 0 5 −1 −1 ± 5 5 −1 ; sin x = ⇒ x = sin −1 2 2 2 5 −1 π ∴ cos x < tan x in sin −1 , and cos x > tan x in 2 4 Que.43. D. 5 −1 −1 0,sin 4 cos θ ( ∑ cos x ) + sin θ ( ∑ sin x ) = 0 1 2 = 3 ∴ cos 32θ = 2 cos 2 θ − 1 = 2. 9 − 1 = 2 = 1 2 4 16 16 8 1+1− Que.44. D. cos θ = 7 1 7.2 7 agin x 2 = 1 + 1 − 2 cos 2θ = 2 (1 − cos 2θ ) = 2 1 − = = ⇒x= 4 2 8 8 A 1 B 2 Que.45. A. sum = sin 0 1 1 2 Que.47. B. ∴ x 1 N C 20 1 P π 2π 8π + sin 2 + ........ + sin 2 + 1 now 18 18 18 Que.46. A. Using ∆ = bc sin A ∴ ⇒ tan M 1/ 2 1 .2 2 ( ) 3 − 1 sin A = sin 2 π 8π + sin 2 = 1 etc. ⇒ sum = 5. 18 18 3 −1 1 ∴ sin A = ⇒ A = 30o 2 2 B−C b−c A 3 − 3 3 +1 = cot = . = 3 ⇒ B − C = 120o also B + C = 150o ⇒ C = 15o. 2 b+c 2 3 + 1 3 −1 2 2 sin 2 x + a cos x + a 2 > 1 + cos x put x = 0 ⇒ a + a > 2 ⇒ a + a = 2 > 0 ⇒ ( a + 2 )( a − 1) > 0 −2 1 ∴ largest negative integral value of ‘a’ = – 3. Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 20 of A - 34 Que. 48. A. a 1 n a 1 sin . + ∑ cos(ka) ⇒ sin . + cos a + cos 2a + cos 3a + ...... + cos na 2 2 k =1 2 2 1 a 1 3a a 5a 3a 1 1 sin + sin − sin + sin − sin + ........ + sin n + a − sin n − a 2 2 2 2 2 2 2 2 2 1 a 1 1 a 1 1 sin + sin n + a − sin = sin n + a. 2 2 2 2 2 2 2 Que. 49. D. Since ABC are acute angle ∴ A +B > π/2 ⇒ A > B> Again, π − B ⇒ sin A − cos B > 0 ⇒ cos B − sin A < 0 2 ................. (1) π − A ⇒ sin B > cos A ⇒ sin B − cos A > 0 2 ................. (2) Form (1) and (2) x-coordinate is – ve and y-coordinate is +ve line in 2nd quadrant only.. ⇒ Que. 50. B. ⇒ sin x sin 3 x − cos 2 x + 2sin x + 1 = 0 sin 4 x − cos 2 sin x + 2sin 2 x + sin x = 0 ⇒ sin x sin 3 x − 1 + sin 2 x + 2 sin x + 1 = 0 ⇒ sin x sin 3 x + sin 2 x + 2 sin x = 0 ⇒ sin 2 x = 0 or sin 2 x + sin x + 2 = 0 ⇒ not possible for real x. sin x = 0 ⇒ x = 0, π, 2π, 3π, ⇒ 4 solution. Que. 51. D. ( ) ( ) ( ) ( ) Que. 52. C. a 2 + b 2 = 4R 2 sin 2 45o − θ + sin 2 135o − θ = 4R 2 sin 2 45o − θ + cos 2 45o − θ = 4R 2 . Que. 53. D. A B C R = 8r = 8 4R sin sin sin 2 2 2 ∴ 2 sin A−B A+B C 1 ⇒ cos − cos sin = 2 2 2 16 C 1 C 1 sin − sin + = 0 2 2 2 16 2 cos C = 1 − 2sin 2 ⇒ ⇒ ⇒ − cos θ cos 2θ hence sin C 1 = 2 4 C 1 7 = 1− = . 2 8 8 − cos θ 1 −2sin 2 θ − cos θ or C 1 C 1 . − sin = ; 2 2 2 16 2 Que. 54. D. For non trivial solution 0 sin C 1 − sin = 0 2 4 1 2 sin 2 θ A B C 1 sin sin = 2 2 2 16 − cos θ 1 − cos θ = 0 using C1 → C1 → C3 cos 2θ − cos θ 1 cos 2θ 1 − cos θ = 0 ⇒ 2sin θ 0 2 1 − cos θ cos 2θ − cos θ = 0 ⇒ sin 2 θ = 0 −1 − cos θ 1 1 1 1 − cos 2 θ − 1 cos 2 θ − cos 2θ ⇒ sin 2 θ − cos 2 θ − (cos 2 θ − sin 2 θ ⇒ sin 2 θ − sin 2 θ = 0 D = 0 ∀θ∈R ⇒ D. Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 21 of A - 34 9 1 1 + 1+ 9 −1 4 5 ; α = tan −1 = 19 = 28 = 14 = a ⇒ 14 + 5 = 19. π tan + α when α = tan 19 1 − 9 10 5 b 1− 1 4 20 19 Que. 55. A. R= Que. 56. D. abc 1 θ c θ ; ∆ = .6.6sin θ = 18sin θ ⇒ a = b = 6 ⇒ sin = ⇒ c = 12 sin . 4∆ 2 2 12 2 Alternatively : OD 2 = 62 + x 2 ⇒ x = tan ( θ / 2 ) ⇒ OD 2 = 62.sec 2 ( θ / 2 ) ⇒ 4r 2 = 36 sec 2 ( θ / 2 ) ⇒ r = 3sec ( θ / 2 ) . 6 ∆ 2 = s ( s − a )( s − b )( s − c ) ⇒ r 2s = ( s − a )( s − b )( s − c ) Que. 57. D. (∴ r = ∆ / s) = s3 − s 2 ( a + b + c ) + ( ab + bc + ca ) s − abc ∴ r 2s = s3 − 2s3 + ( ab + bc + ca ) s − abc using abc =∆ ⇒ 4R abc = 4Rrs ⇒ r 2 = ( ab + bc + ca ) − s 2 − 4Rr ∴ ∑ ab = r 2 + s 2 + 4Rr. E = (1 + tan A)(1 + tan B) = 1 + tan A + tan B + tan A tan B Que. 58. A. tan(A + B) = Now tan A + tan B = 1 ⇒ A = 20o and B = 25o ⇒ 1 − tan A tan B = tan A + tan B 1 − tan A tan B ⇒ tan A + tan B + tan A tan B = 1 ∴ E = 2. ⇒ A. Que. 59. B. Expression reduces to 2 corosec 8x Que. 60. D. x 1+ x 2 x +1 = ( x + 1) 2 ⇒ x 2 (x + 1) 2 + 1 = ( x + 1) (x 2 + 1) ⇒ x 2 (x + 1) 2 + x 2 = x 2 (x + 1) 2 + (x + 1) 2 2 +1 x 2 = (x + 1)2 ⇒ x + 1 = x not possible as x → ∞ or x + 1 = − x ⇒ x = −1/ 2 not possible (think!). Que. 61. D. cos ( tra −1 ( tan(4 − π) ) ) = cos ( 4 − π ) = cos ( π − 4 ) = − cos 4 > 0 (A) ( ) (B) sin cot −1 ( cot ( 4 − π ) ) = sin ( 4 − π ) = − sin 4 > 0 (C) tan cos −1 ( cos ( 2π − 5 ) ) = tan ( 2π − 5 ) = − tan 5 > 0 (D) cot sin −1 ( sin ( π − 4 ) ) = cot ( π − 4 ) = − cot 4 < 0 ( ( ) ) (as sin 4 < 0) ( as tan 5 < 0 ) ⇒ (D) si correct. Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 22 of A - 34 Que. 62. A. 2 ( x 2 + 5 | x | +3 ) − 2 2 π π π π 2 2 = cot cot −1 − cos −1 cos − 2 + ⇒ − 2 + 2 = −2+ 2 2 x + 5 | x | +3 2 x + 5 | x | +3 9 | x | 2 9|x+ 2 0<↓<2 2 ⇒ ⇒ x − 4 | x | +3 = 0 ⇒ x = 1,3 ( x = ±1, ±3. ) Solution are 3, − 1 , 2 − 3, − 2 + 3 ⇒ Product = 1. Que. 63. A. 3 Que. 64. A. o 75 1 − cos 75 tan 37.5o = tan = = sin 75o 2 2 ( o ) ( )=2 6 − 3 + 3 − 2 2 − 3 +1 2 ∴ a = 6; b = 4, c = 3, d = 2 y = (3) Que. 65. C. 3cos x + (3) 4sin x 3 −1 2 2 = 2 2 − 3 +1 = 2 2 − 3 +1 2 3 +1 3 +1 2 2 ( 1− 2 5/2 3 = 2 3.3. 3 2 = 243 = )=2 3 −1 6 −4−2 2 6 −4+2 3 −2 2 = 6− 4+ 3− 2 2 ad 12 = = 1. bc 12 ⇒ 1/ 2 33cos x + 34sin x ≥ ( 33cos x.34sin x ) now using AM ≥ GM 2 ⇒ 33cos x + 34sin x ≥ 2 33cos x + 4sin x ≥ 2 3−5 = )( but −5 ≤ 3cos x + 4sin x ≤ 5 ∴ 33cos x + 34sin x ≥ 2 3−5 4 ⇒ a + b = 247. 243 Domain of f is [ −1, 1] ; f ( x ) = sin x + cos x + tan x + sin −1 x + cos −1 x + tan −1 x Que. 66. A 2 f ' ( x ) = cos x − sin x + sec x +0+ >1 1 1 + x2 [1/ 2, 1] Hence f ' ( x ) > 0 ∴ Que. 67. A. f is increasing ⇒ range is f ( −1) , f (1) f ( x ) |min = f ( −1) = − sin1 + cos1 − tan1 − M+m π = + cos1 2 2 ⇒ ⇒ ⇒ ( A )] S = cosθ + cos 2θ + ....... + cos nθ nθ 2 cos ( n + 1) θ S= θ 2 sin 2 sin θ 2 Hence cos ( n + 1) = 0 π π π + π − = + cos1 − sin1 − tan1 2 4 4 where θ = π / 6 and n = 2009 θ 2010 π π ⇒ now ( n + 1) 2 = 2 6 = ( 335 ) 2 ⇒ S=0 Ans. Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 23 of A - 34 Que. 68. A. = ( ) 2 +1 ⇒ 2 2009 C1 ( 2) 2009 2008 − ( ) 2 −1 + 2009 C3 2009 ( 2) 2006 + 2009 C5 2004 + ........ + 2009 C2009 ( 2 ) 0 (A) ⇒ = which is an even integer ( 2) Comprehesion Type # 1 Paragraph for Q. 1 to Q. 3 1. C. 2. (i) tan B. 3. A. A ∆ r ∆ A s−a = = r = ∴ cot = 2 s (s − a ) s − a s 2 r 4s2 ( a + b + c ) A A s − a + s − b + s − c s s2 abc = = .R ∆ cot = cot = = = in any triangle, ∑ ∏ . 4∆ abc 2 2 r r ∆ 4R 2 (ii) A B ∑ cot 2 cot 2 = cos A B C B C A C A B cos sin + cos cos sin + cos cos sin 2 2 2 2 2 2 2 2 2 A B C A sin sin sin = ∏ sin 2 2 2 2 ........(1) A B C C C A B A B sin + + = 1 ⇒ sin + cos + cos + sin 2 2 2 2 2 2 2 2 2 Now consider A B C B C C A A B C A B C sin cos cos + sin cos cos cos + cos cos cos − sin sin sin = 1 2 2 2 2 2 2 2 2 2 2 2 2 2 ∴ cos A B C B C A C A B A cos sin + cos cos sin + cos cos sin = 1 + ∏ sin 2 2 2 2 2 2 2 2 2 2 A B ∴ ∑ cot cot = 2 2 (iii) We have are not cot A 2 A ∏ sin 2 1 + ∏ sin A A using r = 4R ∏ sin = 2 A s ∑ cot 2 = ∏ cot 2 = r and A B r 4R = 4R + r . r r 4R 1+ ∑ cot 2 cot 2 = 4R + r hence an equation whose roots r A 2 A B A A B C 3 , cot and cot is x − ∑ cot x + ∑ cot cot x − ∏ cot = 0 2 2 2 2 2 2 2 s s 4R + r π f (x) = x 3 − x 2 + x − = 0 as A or B C ∈ . r r r 2 A B C s 4R + r s − =0 ∴ x = 1 must a root as cot or cot or cot = 1 ∴ f (1) = 0 ⇒ 1 − + 2 2 2 R r r ⇒ r − 2s + 4R + r = 0 ⇒ 2R + r = s. Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 24 of A - 34 4. A. 5. # 2 Paragraph for Q. 4 to Q. 6 6. C. B ( AH )( BH )( CH ) = 3 i.e. 3 ( 2R cos A )( 2R cos B )( 2R cos C ) = 3 ⇒ ∏ cos A = 8R 3 ........(1) ( HD )( HE )( HF ) = ( 2R cos B cos C )( 2R cos C cos A )( 2R cos A cos B ) = 8R 3 ( cos2 A cos 2 B cos 2 C ) ....(2) From (1) and (2) ∏ cos A = 3 ∑ cos A 8R 2 . 3 9 ∏ ( HD ) = 8R . 64R 3 4R 2 3 = 7 14R = 1 − 2cos A cos Bcos C ∴ 4R 3 − 7R − 3 = 0 ⇒ 6 = 9 2 2 2 3 also ( AH ) + ( BH ) + ( CH ) = 7 8R ∴ (1) ÷ ( 3) Now we know that, in a triangle ABC cos 2 A + cos 2 B + cos 2 C ⇒ 7 3 7 3 = 1 − 2. 3 ⇒ = 1− 2 2 4R 8R 4R 4R 3 ( R + 1)( 2R + 1)( 2R − 3) = 0 3 ∴R= . 2 Assertion & Reason Type Que. 1. (D) A = π − (B + C) tan A = − tan(B + C) = tan B + tan C ⇒ S − 2 is True tan B tan C − 1 hence if A is acute then tan B tan C > 1 if A is obtuse then thanB tan C < 1 ⇒ S − 1 is False ⇒ answer is (D) Que. 2. (C) Que. 3. (C) f (x) = ax 2 + bx + c given f (0) + f (1) = 2 ⇒ f (x) > 0∀x ∈ R ⇒ S − 1 is true. Let f (x) = x 2 − x + 1 ⇒ Que. 4. (A) a+b =0 ⇒ S − 2 is False cos 2 A + cos 2 B + cos 2 C = 1 − 2 cos A cos B cos C ∴ ∑ cos 2 1 1 3 A |min = 1 − 2. = 1 − = . 8 4 4 Que. 5. B. Que.6. (a) tan θ − tan α − tan β = tan α + tan β tan α + tan β − ( tan α + tan β ) = ( tan α.tan β ) ⇒ tan θ. tan α. tan β 1 − tan α tan β 1 − tan α tan β Que. 7. C. Que. 8. B. Que. 9. D. Givne tan 2x = 1 ∴ 2x = nπ + π (note that tan 4x is not defined) 4 ∴ Statement - 1 is false and Statement - 2 is true. Hence given equation has no solution Que. 10. A. Que. 11. C. If it is acute triangle then statement -1 is abviously true Let A be obtuse say A = 150o ∴ B + C = 30o both angles < 30o and if C = 30o Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 25 of A - 34 Now cot A and cot ( B + C ) will be of equal magnitke but opposite sign, As cot θ is decreasing hence, cos B + cos A alone is +ve Que. 12. B ∴ cos A + cot B + cot C > 0 . (∴ chord BD subtends equal angle in same segment) ∠BPD = ∠BCD = 60° ∴ ∠APB + ∠DPB = 180° A, P, D are collinear |||ly B, P, E and C, P, F are also collinear hence AD, BE, CF are concurrent at P. Que. 13. A. ∴ ∆BHN and BDN are congruent HN = ND = 2R cos Bcos C ⇒ HD = 4R cos Bcos C More than One May Correct Type Que. 1. (A,B,C,D) 2cos θ + 2 2 = 3sec θ ∴ 2cos 2 θ + 2 2 cos θ − 3 = 0 cos θ = −2 2 ± 32 −2 2 ± 4 2 = 4 4 ∴ cos θ = ∴ θ= ⇒ sin θ = − 1 2 π or 4 or − cos θ = − 3 2 ( rejected ) π 4 1 ; cot θ = −1; 2 tan θ = 1 and cos θ = − 1 2 Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 26 of A - 34 Que. 2 (B,C) 1 1 (A) = sin150o = 2 4 ⇒ rational ⇒ irrational (B) 2 + log 2 7 (C) log 3 6 = 1 + log 3 2 (D) 8−1/ 3 = 2−1 = 1 ⇒ 2 ⇒ irrational irrational Que. 3. (B,C,D) Opposite angles of a cyclic quadrilateral are supplementary 11π 5π π π 1 π 1 sin sin = sin cos = sin = ∈ Q 12 12 12 12 2 6 4 Que. 4. (A,B,C,D) (A) (B). 1 9π 4π π π cos ec sec = − cos ec sec = =− o o 19 5 10 5 sin18 cos36 (C). 1 1 3 π π π π π sin 4 + cos 4 = 1 − 2sin 2 cos 2 = 1 − sin 2 = 1 − = ∈ Q 2 4 4 8 8 8 8 4 (D). π 2π 4π 1 2cos 2 .2 cos 2 .2cos 2 = 8 ( cos 20o.cos 40o.cos80o ) = ∈ Q 9 9 9 8 1 2 1 2 1 2 Que. 5. (A,C) ra + rb = ab sin C ⇒ r(a + b) = 2∆ ⇒ r = 2∆ a+b ( 16 )( 5 −1 ) 5 +1 = −4 ∈ Q ......(1) C A B R A ∴ r= R I B 2abc abc 2ab C = ⇒ ( A ) also x = cos 2 4R ( 2R sin A + 2R sin B ) 4R ( sin A + sin B ) a+b 2 form (1) 1 C C C 2. ab sin C 2ab sin cos 2ab cos 2 2 = 2 .sin C = x sin C r= 2 = a+b a+b a+b 2 2 Que. 6. (A,C) sin x − 3sin 2x + sin 3x = cos x − 3cos 2x + cos 3x or 2sin 2x cos x − 3sin 2x = 2 cos x − 3cos 2x sin 2x ( 2 cos x ) − 3 = cos 2x [ 2 cos x − 3] ⇒ ( sin 2x − cos 2x )( 2 cos x − 3) = 0 but 2 cos x − 3 ≠ 0 as cos x ≤ 1 hence, sin 2x − cos 2x = 0 ⇒ tan 2x = 1 ⇒ 2x = nπ + π / 4 or x = nπ π + ⇒ a, b, c 2 8 Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 27 of A - 34 Que. 7. (A,B,D) ( sin x+ cos x ) 2 = 1 − 3sin 2 x cos 2 x > ⇒ 2 3 - 3sin 2 xcos 2 x ( sin 2 + cos 2 x ) > 5 8 5 5 ⇒ 1 − > 3sin 2 x cos 2 x 8 8 3 π π π π > 3sin 2 x cos 2 x ⇒ 1 − 2sin 2 2x > 0 ⇒ cos 4x > 0 ⇒ 4x ∈ − , ⇒ 4x ∈ 2πr − , 2πr + 8 2 2 2 2 nπ π nπ π x ∈ − , + n∈I 2 8 2 8 now verify . Que. 8. (A,B,D) Que. 9. (B,C,D) sin (18o ) sin 24o cos 60o − cos 24o sin 6o (A) 1 (B) 3 (C) sin 21o cos 39o − sin 39o cos 21o = sin −18o = −1 ( ) Que. 10. (A,C) (A) Que. 11. B,D. tan ( α + β ) = Que. 12. A,B,C. (A). tan α = cos 2 α − sin α = 2 cot 2α sin α cos α 15 8 π ∴ α + β + γ = ⇒ (B) and (D) and tan γ = 8 15 2 1 − cos 2θ ⇒ (A) is correct. sin 2θ (B). 2 tan θ 1 − tan 2 θ 2 tan θ sin 2θ = ; cos 2θ = ; tan 2θ = ⇒ (B) is correct. 2 2 1 + tan θ 1 + tan θ 1 − tan 2 θ (C). tan 3θ = (D). sin θ = Que. 13. A,B,C,D. (D) –1 sin θ ⇒ cos 3θ (C) is correct. 1 which is rational but cos 3θ = cos θ ( 4 cos 2 θ − 3) which is irrational ⇒ (D) is correct. 3 3θ = nπ + ( −1) ( 3α ) n ∴ 3θ = 3α; 3θ = π − 3α; 3θ = −π − 3α or 3θ = 2π + 3α; 3θ = −2π + 3α Hence θ = α; θ = π 2π π 2π − α; θ = − + α ; θ = + α ; θ = − + 3α 3 3 3 3 π 2π ⇒ cos θ = cos ± α or cos θ = cos ± α ⇒ (A), (B), (C) and (D) all are correct. 3 3 Que. 14. A,B. Given quadratic equaton is an identity ∴ cosec2 θ = 4 and cot θ = − 3 ⇒ cosec θ = 2 or − 2 and tan θ = − Que. 15. A,B,C. (a 2 1 ⇒ 3 θ= 5π 11π or 6 6 Making quadrtic in sine from a cos θ + b sin θ + c, we get + b 2 ) sin 2 θ − 2bc sin + c 2 − a 2 = 0 α β ................ (1) Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 28 of A - 34 ⇒ sin α + sin β = 2bc c2 − a 2 ⇒ (A) is correct ⇒ sin α + sin β = ⇒ (B) is correct a 2 + b2 a 2 + b2 Making quadratic equation in cos, we get (changing a and b) (a 2 α β + b 2 ) cos 2 θ − 2ac cos θ + c 2 − b 2 = ⇒ cos α + cos β = 2bc c2 − b2 ⇒ (C) is correct ⇒ cos α + cos β = ⇒ (D) is correct a 2 + b2 a 2 + b2 ∑ cos 3A = 1 ⇒ sin Que. 16. B,D. alos r = ( s − a ) tan A B C or ( s − b ) tan or ( s − c ) tan 2 2 2 r = 3 ( s − a ) or Que. 17. A,D. 3 ( s − b ) or 3 (s − c) ⇒ (D) 3 −1 3 +1 π π π + = 2 ⇒ sin cos x + cos sin x = sin 2x ⇒ sin 2x = sin x + 12 12 2 2 sin x 2 2 cos x 12 ∴ 2x = x + Que. 18. A. 3A 3B 3C 2π 2π 2π .sin .sin =0 ∴ A= or B = or C = ⇒ (B) 2 2 2 3 3 3 π π or 2x = π − x − 12 12 ⇒ x= π 11π or 3x = 12 12 ∴ x= π 11π or ⇒ A, C. 12 36 Square and adding 9 + 16 + 24sin ( A + B ) = 37 ⇒ 24sin ( A + B ) = 12 ⇒ sin ( A + B ) = 1 2 1 ⇒ sin C = ; C = 30o Or 150o if C = 150 o then even of B = 0 and 2 1 1 3sin A + 4cos B ⇒ 3. + 4 = 5 < 6 hence C = 150o is not possible 2 2 Que. 19. A,B,C,D. A = 30 o the quantity ⇒ ∠C = 30o only cos 3θ = cos 3α put n = 0,1 ⇒ 3θ = 2nπ ± 3α ∴ 3θ = 3α or − 3α or 2π + 3α or 2π − 3α θ = α or − α or 2π 2π + α or −α ⇒ 3 3 if n = −1 ⇒ 3θ = −2π ± 3α ⇒ θ = − (A), (C), (D) are correct. 2π ±α 3 π 2π 2π π π sin θ = sin − ± α = − sin ± α = − sin π − ± α = − sin π − ± α = − sin ± α 3 3 3 3 3 hence (B) is not correct. Que. 20. B, C, D i.e. use power of point B w.r.t. the circle passing through AC1GB1 BC1 × BA = BG × BB1 ⇒ c2 2 c 2 2 2c2 + 2a 2 − b 2 2 c 2 × ( mb ) ⇒ = × c = BB1 × BB1 ⇒ 3 3 3 3 4 2 3 Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 29 of A - 34 ⇒ ⇒ 2a 2 = b 2 + c 2 Ans. B, C, D are the answers. Match Matrix Type Que. 1. A - R. A. B - S. C- P. cos 2 2x − sin 2 x = 0 ⇒ cos 3x.cos x = 0 ⇒ cos 3x = 0 or cos x = 0 ⇒ 3x = (2n − 1) x = ( 2n − 1) π ⇒ (R) 6 B. cos x + 3 sin x = 3 ⇒ ∴ x− 3 tan 2 x − D. ⇒ π 2 π π π π or x = ( 2n − 1) hence general solution is (2n − 1) as ( 2n − 1) is contained in 6 2 6 2 (2n − 1) C. D - Q. ( cos x 3 3 π π π π + ⇒ cos x − = cos ⇒ x − = 2nπ ± sin x = 2 2 2 3 6 3 6 π π π π π = 2nπ + or 2nπ − ⇒ x = 2nπ + or x = 2nπ + ⇒ (S) 3 6 6 2 6 ) 3 + 1 tan x + 1 = 0 ⇒ 3 tan x ( tan x − 1) − ( tan x − 1) = 0 ⇒ ( tan x − 1) ∴ tan x − 1 or tan x = ⇒ 1 3 ⇒ nπ nπ are nπ is contained in 3 3 ⇒ nπ nπ (rejected) or 2 3 (Q) Subjective Type ( Up to 4 digit) Que. 1. π = θ; 17θ = π ⇒ 2cos θ.cos9θ + cos 7θ + cos9θ ⇒ 17 ) 3 tan x − 1 = 0 π x = nπ + 4 ⇒ (P) π x = nπ + 6 tan 3x − tan 2x − tan x = 0 or tan x. tan 2x.tan 3x = 0 ⇒ x = nπ or general solution ( cos(100)θ + cos8θ + cos 7θ + cos 9θ = 0 Sum of cosines of supplymentary angles is zero. Que. 2 tan α 2sin α cos β − 2sin α 2sin α(cos β − 1) = = tan α Hence proved. 2cos α cos β − 2cos α 2cos α(cos β − 1) Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 30 of A - 34 Que. 3. Multiple numerator and denominator by 2 cos θ − cos 3θ + cos 3θ − cos 9θ + cos 9θ − cos17θ sin 3θ − sin θ + sin 9θ − sin 3θ + sin17θ − sin 9θ ∴ = cos θ − cos17θ 2sin 9θ sin 4θ = = tan 9θ = tan kθ ⇒ sin17θ − − sin θ 2sin 4θ cos9θ k = 9. 3 2 7 3 ; 8 16 Que. 4. 8 8 x x x x x x x x y = cos − sin = cos 4 − sin 4 cos 4 + sin 4 = cos x 1 − 2 sin 2 cos 2 2 2 2 2 2 2 2 2 1 = cos x 1 − sin 2 x 2 (i) 3 3 2 π 1 1 1 1 3 y = . = = . 1 − . = 8 2 2 2 2 4 4 2 4 (ii) 3 1 1 7 3 π y = 1 − ; = 6 2 2 4 16 sin A sin B sin C 52 + 62 − 42 3 = = ⇒ a = 4k, b = 5k, c = 6k ∴ cos A = = ; a b c 2.5.6 4 Que. 5. (229) cos B cos A cos B cos C 4 2 + 6 2 − 52 9 4 2 + 52 − 6 2 1 = = = ;cos C = = hence 3/ 4 9 /16 1/ 8 2.5.6 16 2.4.5 8 deividing by 16 cos A cos B cos C = = ∴ x = 12, y = 9 and z = 2. 12 9 2 Que. 6. A = 3; B = 1;C = −2; D = 2 ⇒ 3 + 1 − (−2) ÷ 2 = 5. Que. ( ( ) be independent of x, 1 − 2k 2 = 0 ⇒ k = 2 4 ( Que. 9. L = ) ( 6 + 2 + 8+ 4 3 4 )= 1+ ) 2 x cos 2 x (1 − 2k 2 ) for this to 1 1 or − Note :The value of expression for this value of k 2 2 1 . 2 π 1 + cos15o o cot = cos 7.5 = = Que. 8. 24 sin15o = ( 2 = 1 − 2 − sin 2 x cos2 − k 2 cos2 x + sin 2 x − 4sin 2 x cos2 x = (1 − k 2 is ) ) − 2 sin E = cos2 x + sin 2 x − 2sin 2 x cos2 x − k 2 cos2 x − sin 2 x 7. 6+ 2 4+ 6 + 2 4+ 6 + 2 4 = = 4 6− 2 6− 2 4 ( )( 6+ 2 ) 6 + 2 + 2 + 3 = 2 + 3 + 4 + 6 ∴ p + q + r + s = 15. −2cos 4θ sin 2θ + 2sin 4θ sin 2θ 2sin 2θ ( sin 4θ − cos 4θ ) = = 2sin 2θ sin 4θ − cos 4θ sin 4θ − cos 4θ Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 31 of A - 34 5 +1 2 If θ = 27 o , L = 2sin 54o == 2cos36o ⇒ L = 2 tan x tan x. tan x tan 2x 2 tan x 2 tan x 1 − tan 2 x = M= = = = sin 2x 2 2 2 tan x tan 2x − tan x 1 + tan x 2 − 1 − tan x − tan x 1 − tan 2 x ( when x = 9o , M = sin18o ⇒ M = N= ) 5 −1 . 4 1 − cos 4α 1 + cos 4α 2sin 2 2α.cos 2 2α 2cos 2 2α.sin 2 2α + = + = 2 cos 2 2α + sin 2 2α ⇒ N = 2. 2 2 2 2 sec 2α − 1 cos ec 2α − 1 1 − cos 2α 1 − sin 2α ( ) ( ( ) ) 5 + 1 5 − 1 ∴ LMN = (2) = 1. 2 4 Que. 10. cos ( α + β ) = 4 3 5 5 now 2β = ( α + β ) − ( α − β ) ⇒ tan ( α + β ) = ⇒ sin ( α − β ) = ⇒ tan ( α − β ) = 5 4 13 12 3 5 − tan ( α + β ) − tan ( α − β ) 4 12 16 tan 2β = = = . 1 + tan ( α + β ) .tan ( α − β ) 1 + 3 . 5 63 4 12 Que. 11. 2 (1 − sin 2 x ) − sin 4 x + k = 0 put sin 2 x = t, t ∈ [ 0,1] ⇒ 2 (1 − t ) − t 2 + k = 0 ⇒ t 2 − 4t + k + 2 = 0 2 2 since sum of the roots is 4 ⇒ one root in (0,1) and other greater then 1 as shown y x O now f (0) ≥ 0 and f (1) ≤ 0 ⇒ k + 2 ≤ 0 and k − 1 ≥ 0 ⇒ k ∈ [ −2,1] . Alternatively : 2 cos 4 x − sin 4 x + k = 0 ⇒ cos 4 x + ( cos 4 x − sin 4 x ) + k = 0 ⇒ cos 4 x + cos 2x + k = 0 2 1 + cos 2x 2 2 + cos 2x + k = 0 ⇒ 1 + cos 2x + 6 cos 2x + 4k = 0 .....(A) ⇒ cos 2x = t ⇒ t + 6t + 1 + 4k = 0 2 ⇒ ( t + 3) = 8 − 4k ⇒ ( t + 3) max. = 16 ⇒ ( t + 3)min. = 4 ∴ 4 ≤ 8 − 4k ≤ 16 ⇒ −4 ≤ −4k ≤ 18 ⇒ 1 ≥ k ≥ −2 2 2 Alternatively : After step (A) 2 cos 2x = −6 ± 36 − 16k − 4 −6 ± 32 − 16k = 2 2 cos 2x = −3 + 2 2 − k or − 3 − 2 2 − k (rejected, think !) ⇒ −1 ≤ −3 + 2 2 − k ≤ 1 ⇒ 2 ≤ 2 2 − k ≤ 4 ⇒ 1 ≤ 2 − k ≤ 2 ⇒ 1 ≤ (2 − k) ≤ 4 ⇒ −1 ≤ − k ≤ 2 ⇒ 1 ≥ k ≥ −2 Que. 12. Let a = sin θ; b = sin θ + 2π 4π 2π 4π ; c = sin θ + Hence, a + b + c = sin θ + sin θ + + sin θ + 3 3 3 3 Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 32 of A - 34 2π 2π π π π = sin θ + sin − θ − sin + θ use : sin π + = sin π − θ + = sin − θ (using C-D) 3 3 3 3 3 π = sin θ − 2 cos sin θ = sin θ − sin θ = 0 since a + b + c = 0 hence a 3 + b3 + c3 = abc 3 2π 4π π π π ∴ sin 3 θ + sin 3 θ + + sin 3 θ + = −3sin θ sin − θ sin + θ = −3sin θ sin 2 − sin 2 θ 3 3 3 3 3 =− 3 3 3sin θ − 4sin 3 θ ) = − sin 3θ. H.P. ( 4 4 sin ( 2 r − 2r −1 ) sin 2 r cos r −1 − cos 2r sin 2r −1 sin 2r −1 Que. 13. Tr = = = = tan 2 r − tan 2r −1 r −1 r r −1 r r −1 r cos 2 .cos 2 cos 2 .cos 2 cos 2 .cos 2 n ∴ Sum = ∑ ( tan 2r − tan 2r −1 ) = tan 2 − tan1 + tan 22 − tan 2 + tan 23 − tan 2 2 + ......... + tan 2 n − tan 2n −1 r =1 Sum = tan 2n − tan (1) Que. 14. (0250.00) Dividing by 15 tan 4 α + 10 = 6sec 4 α ⇒ 15 tan 4 α + 10 = 6(1 + tan 2 α ) 2 cos 4 α ⇒ 9 tan 4 α − 12 tan 2 α + 4 = 0 ⇒ ( 3 tan 2 α − 2 ) = 0 ⇒ tan 2 α = 2 2 3 3 3 2 8 cosec α + 27 sec α ⇒ 8 (1 + cot α ) + 27 (1 + tan α ) ⇒ 8 1 + + 27 1 + ⇒ 125 + 125 = 250. 2 3 Now 6 6 2 3 2 3 x + sin y = 2008 Que. 15. (2008). ∴ y= Que. 16. (92) Subtract x + 2008cos y = 2007 ⇒ sin y = 1 + 2008cos y This is possible only if cos y = 0 sin y − 2008cos y = 1 π π and x = 2007 ⇒ x + y = 2007 + ⇒ [ x + y ] = 2008. 2 2 2sin x sin1 = cos ( x − 1) − cos ( x + 1) 44 ∴ S∑ cos ( x − = 1) − cos ( x + 1) 1 + sec ( x − 1) .sec ( x + 1) x =2 1 1 = ∑ cos ( x − 1) + − cos(x − 1) − cos(x + 1) cos ( x − 1) x =2 44 1 − cos 2 ( x + 1) 1 − cos 2 (x − 1) = ∑ − cos ( x + 1) cos(x − 1) x =2 44 2 44 sin 2 (x + 1) sin ( x − 1) sin 2 3 sin 2 1 sin 2 4 sin 2 2 sin 2 4 sin 2 3 sin 2 44 sin 2 42 = ∑ − ∴ S = − + − + − ........ + − cos ( x − 1) cos 3 cos1 cos 4 cos 2 cos 5 cos 3 cos 44 cos 42 x = 2 cos ( x + 1) + sin 2 44 sin 2 42 sin 2 45 sin 2 43 sin 2 44 sin 2 45 sin 2 1 sin 2 2 − + − ⇒ S= + − − cos 44 cos 42 cos 45 cos 43 cos 44 cos 45 cos1 cos 2 sin 2 1 sin 2 44 sin 2 2 sin 2 45 S=− + − + which resembles 4 term of cos1 cos 44 cos 2 cos 45 ∴ 4 ∑ ( −1) n =1 n φ2 ( θn ) ψ ( θn ) θ1 + θ2 + θ3 + θ4 = 1 + 2 + 44 + 45 = 92. Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 33 of A - 34 Que. 17. (3388) f (x) = cos −1 ( sin x ) = g(x) = sin −1 ( cos x ) = π − sin −1 ( sin x ) ...........(1) 2 π − cos −1 (cos x) 2 and ............... (2) both f(x) and g(x) are periodic with period −1 −1 2π. The graphs of sin ( sin x ) and cos ( cos x ) as follows π 2 − x if x ∈ [ 0, π / 2] π π 3π <x≤ hence f (x) = x − if ; 2 2 2 5π − x if 3π < x ≤ 2π 2 2 π 2 − x if x ∈ [ 0, π] g(x) x − 3π if x ∈ [ π, 2π] 2 Now Area enclosed between the two curves is the area of the rectangle ABCD in one pepriod. now Now and and π2 π2 π2 π AD = + = = 4 4 2 2⇒ DC = 2π DC = 2π ∴ A = 7.π2 = 7 π2 π . 2 [= π2 2 ( in [ −7π, 7π]) 49A = 49.7 π2 = 7.22.22 = 7.484 = 3388. Address : Plot No. 27, III- Floor, Near Patidar Studio, Above Bond Classes, Zone-2, M.P. NAGAR, Bhopal “IITJEE MATHS BY SUHAG SIR” ON WWW.YOUTUBE .COM Teko Classes, Maths : Suhag R. Kariya (S. R. K. Sir), Bhopal Phone : 0 903 903 7779, 0 98930 58881. Also Available online www.MathsBySuhag.com DOWNLOAD FREE STUDY PACKAGE FROM WEBSITE WWW.TEKOCLASSES.COM IIT JEE MATHS by SUHAG SIR Bhopal, Ph. 0 903 903 7779 Teko Classes www.TekoClasses.com Question. & Solution. Trigo. Page: A - 34 of A - 34
© Copyright 2026 Paperzz