Supporting information:

Search for New Catalysts for the Oxidation of SO2
J. Loskyll, K. Stoewe, W. F. Maier*
Technische Chemie, Universität des Saarlandes, 66123 Saarbrücken, Germany
*[email protected]
+49/681/302/2422
Supporting information
S1
S2
Sb100Cr0Ox
Intensity [a.u.]
ICSD no. 4109
Cervantite
20
30
40
50
60
70
80
90
2 [°]
Figure S1: PXRD pattern of Sb2O4
S3
Sb0Cr100Ox
Intensity [a.u.]
ICSD no. 33642
Eskolaite
20
30
40
50
60
70
80
90
2 [°]
Figure S2: PXRD pattern of Cr2O3
S4
Sn100V0Ox
Intensity [a.u.]
ICSD no. 56671
Cassiterite
20
30
40
50
60
70
80
90
2 [°]
Figure S3: PXRD pattern of SnO2
S5
Sn0Fe100Ox
Intensity [a.u.]
ICSD no. 415251
Hematite
20
30
40
50
60
70
80
90
2 [°]
Figure S4: PXRD pattern of α-Fe2O3
S6
Sn0V100Ox
Intensity [a.u.]
ICSD no. 24042
Shcherbianite
20
30
40
50
60
70
80
90
2 [°]
Figure S5: PXRD pattern of V2O5
Figure S1-S5 show the PXRD patterns of the pure base oxides. All show a high degree of
crystallinity and are phase pure. Worth mentioning is that the SnO2 samples changed their
color from white to black due to a phase transition when they were pressed to form pellets for
the XRF analysis ( ≈15 kbar).
S7
Element
Al
Co
Cr
Cu
Fe
Mn
Mo (1)
Nb (3)
Ni
Ta (3)
Ti (3)
V (2)
Zr
Chemical formula
Al(acac)3 (4)
Co(CH3COO)2*4H2O
[(CH3CO2)2Cr*H2O]2
Cu(CH3COO)2
Fe(CH3COO)2
Mn(acac)2 (4)
Mo2(CH3COO)4
Nb(OCH2CH3)5
Ni(CH3COO)2*4H2O
Ta(OC2H5)5
Ti(OCH(CH3)2)4
VO(OCH(CH3)2)3
Zr(OCH2CH2CH3)4 70wt% in n-propanole
Supplier
Aldrich, Sigma Aldrich
Lancaster
Aldrich, Sigma Aldrich
Alfa
Merck
Aldrich, Sigma Aldrich
Acros Organics BVBA
Alpha AESAR
ABCR GmbH & Co. KG
Alpha AESAR
ABCR GmbH & Co. KG
Alpha AESAR
Table S1: Precursors used for the propionic acid based sol-gel synthesis. (1) Mo2(CH3COO)4 could only be
dissolved when the fresh precursor was boiled under reflux; (2) the VO(OiPr) 3 precursor solution did not gel but
dried; (3) The Nb, Ta and Ti precursors were highly sensitive to hydrolysis and had to be processed without any
delay (4) acac = acetylacetonate (C5H7O2-)
S8
Dopant
Ag
Al
Au
Au
B
Ba
Bi
Ca
Cd
Ce
Co
Cr
Cs
Cu
Dy
Er
Eu
Fe
Ga
Gd
Ge
Hf
Ho
In
Ir
K
La
Li
Lu
Mg
Mn
Mn
Mo
Na
Nb
Nd
Ni
Pb
Pd
Pr
Pt
Rb
Re
Rh
Ru
Sb
Sc
Se
Si
Sm
Sn
Sr
Ta
Chemical formula
AgNO3
AlNO3·9H2O
Au(OOCCH3)3
AuCl3
B(OH)3
BaCl2
Bi(OCH2CH(CH3)C4H9)5
Ca(NO3)2·4H2O
Cd(NO3)2·4H2O
Ce(NO3)3·6H2O
Co(NO3)2·6H2O
Cr(NO3)3·9H2O
CsCl
Cu(NO3)2·3H2O
Dy(NO3)3·5H2O
Er(NO3)3·5H2O
Eu(NO3)3·6H2O
Fe(NO3)3·9H2O
Ga(NO3)3·H2O
Gd(NO3)3·6H2O
Ge(OCH(CH3)2)4
HfCl4
Ho(NO3)3·H2O
In(NO3)3·5H2O
IrCl4·6H2O
KNO3
La(NO3)3·6H2O
LiNO3
LuNO3·xH2O
Mg(NO3)2·6H2O
Mn(acac)3
Mn(NO3)2·6H2O
Mo(OCH(CH3)2)5 - 5% w/v in isopropanole
NaNO3
NbCl5
Nd(NO3)3·6H2O
Ni(NO3)2·6H2O
Pb(ClO4) ·3H2O
Pd(NO3)2·H2O
Pr(NO3) ·xH2O
PtBr4
Rb(acac)
ReCl5
RhCl3·H2O
RuCl3·xH2O
SbCl3
ScNO3
SeO2(OH)2
Si(OEt)4
Sm(NO3)3·5H2O
SnCl2·2H2O
SrCl2·6H2O
Ta(OC2H5)5
Supplier
ABCR GmbH & Co. KG
Alfa AESAR
Alfa Aesar
k.A.
Fluka
k.A.
Strem
Merck
Fluka
Fluka
Fluka
Aldrich, Sigma Aldrich
k.A.
Fluka
Aldrich, Sigma Aldrich
Aldrich, Sigma Aldrich
STREM
k.A.
Aldrich, Sigma Aldrich
Aldrich, Sigma Aldrich
Aldrich, Sigma Aldrich
Aldrich, Sigma Aldrich
STREM
Merck
Aldrich, Sigma Aldrich
k.A.
Fluka
Fluka
Aldrich, Sigma Aldrich
Merck
Aldrich, Sigma Aldrich
Merck
Alfa Aesar
Merck
Alfa Aesar
Aldrich, Sigma Aldrich
Aldrich, Sigma Aldrich
k.A.
Aldrich, Sigma Aldrich
k.A.
k.A.
Aldrich, Sigma Aldrich
Aldrich, Sigma Aldrich
Aldrich, Sigma Aldrich
Aldrich, Sigma Aldrich
J. T. Baker
ABCR GmbH & Co. KG
Aldrich, Sigma Aldrich
Acros
Riedel
Aldrich, Sigma Aldrich
Merck
ABCR GmbH & Co. KG
S9
Tb
Te
Ti
Tm
V
W
Y
Yb
Zn
Zr
Tb(NO3)3·5H2O
Te(OH)6
Ti(OCH(CH3)2)4
Tm(NO3)3·6H2O
VO(OCH(CH3)2)3
WCl6
Y(NO3)3·6H2O
Yb(NO3)3·xH2O
Zn(NO3)2·6H2O
ZrO(NO3)2·xH2O
Alfa AESAR
Fluka
Lancaster
ABCR GmbH & Co. KG
ABCR GmbH & Co. KG
Fluka
ABCR GmbH & Co. KG
ABCR GmbH & Co. KG
Avocado
Johnson
Table S2: Dopants used for the propionic acid based sol-gel synthesis
S10
Element
B (1)
Bi (1)(2)
Ce
Cr (7)
Cu (4)
Fe (7)
Mn (4)
Mo
Sb (1)(3)
Se (1)
Si
Sn (3)
Ta (2)(5)
Ti (2)(5)
V (3)(5)(6)
W (5)(9)
Zr
Dopants (8)
Ca
Cs
Ga
Ge
K
Li
Mg
Na
Nb
Rb
Zn
Chemical formula
B(OH)3
Bi5O(OH)9(NO3)4
Ce(NO3)3·9H2O
Cr(NO3)3·9H2O
Cu(NO3)2·3H2O
Fe(NO3)3·9H2O
Mn(NO3)2·4H2O
MoCl3
SbCl5
H2SeO3
Si(OCH2CH3)4
SnO
Ta(OC2H5)5
Ti(OCH(CH3)2)4
VO(OCH(CH3)2)3
W-peroxyester
ZrO(NO3)2
Supplier
Fluka
Merck
Fluka
Aldrich, Sigma Aldrich
Fluka
Merck
Alfa Aesar
VWR International
Aldrich, Sigma Aldrich
Acros
ABCR GmbH & Co. KG
ABCR GmbH & Co. KG
Lancaster
ABCR GmbH & Co. KG
Laboratory synthesis
Avocado
Solvent
EG/H2O/HNO3
EG/H2O/HNO3
EG/H2O/HNO3
EG/H2O/HNO3
EG/H2O/HNO3
EG/H2O/HNO3
EG/H2O/HNO3
EG/H2O/HNO3
EG/H2O/HNO3
EG/H2O/HNO3
EG/H2O/HNO3
EG/H2O/HNO3
EG
EG
EG/H2O/HNO3
EG/H2O/HNO3
EG/H2O/HNO3
Ca(NO3)2·4H2O
CsNO3
Ga(NO3)3·H2O
Ge(OC3H7)4
KNO3
LiNO3
Mg(NO3)2·6H2O
NaNO3
Nb(OOCCOOH)5· (HOOCCOOH)
RbNO3
Zn(NO3)2·6H2O
Merck
Strem
Aldrich, Sigma Aldrich
Aldrich, Sigma Aldrich
Fluka
Merck
Merck
ABCR GmbH & Co. KG
Fluka
Avocado
CH3OH
CH3OH
CH3OH
CH3OH
CH3OH
CH3OH
CH3OH
CH3OH
CH3OH
CH3OH
CH3OH
M
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
B
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
T
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
Table S3: Precursors used for the ethylene glycol based sol-gel synthesis. The columns labelled M, B and T
show if pure oxides (M), binary (B) and / or ternary mixed oxides (T) were synthesized; the column solvent
shows if methanol, ethylene glycol (EG) or a mixture of solvents was used; (1) partially volatile (2) highly
sensitive to hydrolysis (3) may violently react during hydrolysis / mixing (4) precursor precipitate instead of
forming a gel (5) direct start of gelling (6) the vanadium(V) precursor should only be processed further after it
has been reduced to vanadium(III) due to a reaction with the solvent (7) Fe and Cr were used in very high
concentrations of 1.56 mol/L (8) the dopants were used in concentrations of 0.1 mol/L to give compounds of the
type Sb25,9Cr74,1A2Ox or Sb25,9Cr74,1A5Ox (9) the W precursor used was synthesized according to Cronin, J. P.
Tarico, D. J. Agrawal, A.; Zhang, R. L. Method for depositing high performing electrochromic layers. US Patent
5,277,986.
S11