Search for New Catalysts for the Oxidation of SO2 J. Loskyll, K. Stoewe, W. F. Maier* Technische Chemie, Universität des Saarlandes, 66123 Saarbrücken, Germany *[email protected] +49/681/302/2422 Supporting information S1 S2 Sb100Cr0Ox Intensity [a.u.] ICSD no. 4109 Cervantite 20 30 40 50 60 70 80 90 2 [°] Figure S1: PXRD pattern of Sb2O4 S3 Sb0Cr100Ox Intensity [a.u.] ICSD no. 33642 Eskolaite 20 30 40 50 60 70 80 90 2 [°] Figure S2: PXRD pattern of Cr2O3 S4 Sn100V0Ox Intensity [a.u.] ICSD no. 56671 Cassiterite 20 30 40 50 60 70 80 90 2 [°] Figure S3: PXRD pattern of SnO2 S5 Sn0Fe100Ox Intensity [a.u.] ICSD no. 415251 Hematite 20 30 40 50 60 70 80 90 2 [°] Figure S4: PXRD pattern of α-Fe2O3 S6 Sn0V100Ox Intensity [a.u.] ICSD no. 24042 Shcherbianite 20 30 40 50 60 70 80 90 2 [°] Figure S5: PXRD pattern of V2O5 Figure S1-S5 show the PXRD patterns of the pure base oxides. All show a high degree of crystallinity and are phase pure. Worth mentioning is that the SnO2 samples changed their color from white to black due to a phase transition when they were pressed to form pellets for the XRF analysis ( ≈15 kbar). S7 Element Al Co Cr Cu Fe Mn Mo (1) Nb (3) Ni Ta (3) Ti (3) V (2) Zr Chemical formula Al(acac)3 (4) Co(CH3COO)2*4H2O [(CH3CO2)2Cr*H2O]2 Cu(CH3COO)2 Fe(CH3COO)2 Mn(acac)2 (4) Mo2(CH3COO)4 Nb(OCH2CH3)5 Ni(CH3COO)2*4H2O Ta(OC2H5)5 Ti(OCH(CH3)2)4 VO(OCH(CH3)2)3 Zr(OCH2CH2CH3)4 70wt% in n-propanole Supplier Aldrich, Sigma Aldrich Lancaster Aldrich, Sigma Aldrich Alfa Merck Aldrich, Sigma Aldrich Acros Organics BVBA Alpha AESAR ABCR GmbH & Co. KG Alpha AESAR ABCR GmbH & Co. KG Alpha AESAR Table S1: Precursors used for the propionic acid based sol-gel synthesis. (1) Mo2(CH3COO)4 could only be dissolved when the fresh precursor was boiled under reflux; (2) the VO(OiPr) 3 precursor solution did not gel but dried; (3) The Nb, Ta and Ti precursors were highly sensitive to hydrolysis and had to be processed without any delay (4) acac = acetylacetonate (C5H7O2-) S8 Dopant Ag Al Au Au B Ba Bi Ca Cd Ce Co Cr Cs Cu Dy Er Eu Fe Ga Gd Ge Hf Ho In Ir K La Li Lu Mg Mn Mn Mo Na Nb Nd Ni Pb Pd Pr Pt Rb Re Rh Ru Sb Sc Se Si Sm Sn Sr Ta Chemical formula AgNO3 AlNO3·9H2O Au(OOCCH3)3 AuCl3 B(OH)3 BaCl2 Bi(OCH2CH(CH3)C4H9)5 Ca(NO3)2·4H2O Cd(NO3)2·4H2O Ce(NO3)3·6H2O Co(NO3)2·6H2O Cr(NO3)3·9H2O CsCl Cu(NO3)2·3H2O Dy(NO3)3·5H2O Er(NO3)3·5H2O Eu(NO3)3·6H2O Fe(NO3)3·9H2O Ga(NO3)3·H2O Gd(NO3)3·6H2O Ge(OCH(CH3)2)4 HfCl4 Ho(NO3)3·H2O In(NO3)3·5H2O IrCl4·6H2O KNO3 La(NO3)3·6H2O LiNO3 LuNO3·xH2O Mg(NO3)2·6H2O Mn(acac)3 Mn(NO3)2·6H2O Mo(OCH(CH3)2)5 - 5% w/v in isopropanole NaNO3 NbCl5 Nd(NO3)3·6H2O Ni(NO3)2·6H2O Pb(ClO4) ·3H2O Pd(NO3)2·H2O Pr(NO3) ·xH2O PtBr4 Rb(acac) ReCl5 RhCl3·H2O RuCl3·xH2O SbCl3 ScNO3 SeO2(OH)2 Si(OEt)4 Sm(NO3)3·5H2O SnCl2·2H2O SrCl2·6H2O Ta(OC2H5)5 Supplier ABCR GmbH & Co. KG Alfa AESAR Alfa Aesar k.A. Fluka k.A. Strem Merck Fluka Fluka Fluka Aldrich, Sigma Aldrich k.A. Fluka Aldrich, Sigma Aldrich Aldrich, Sigma Aldrich STREM k.A. Aldrich, Sigma Aldrich Aldrich, Sigma Aldrich Aldrich, Sigma Aldrich Aldrich, Sigma Aldrich STREM Merck Aldrich, Sigma Aldrich k.A. Fluka Fluka Aldrich, Sigma Aldrich Merck Aldrich, Sigma Aldrich Merck Alfa Aesar Merck Alfa Aesar Aldrich, Sigma Aldrich Aldrich, Sigma Aldrich k.A. Aldrich, Sigma Aldrich k.A. k.A. Aldrich, Sigma Aldrich Aldrich, Sigma Aldrich Aldrich, Sigma Aldrich Aldrich, Sigma Aldrich J. T. Baker ABCR GmbH & Co. KG Aldrich, Sigma Aldrich Acros Riedel Aldrich, Sigma Aldrich Merck ABCR GmbH & Co. KG S9 Tb Te Ti Tm V W Y Yb Zn Zr Tb(NO3)3·5H2O Te(OH)6 Ti(OCH(CH3)2)4 Tm(NO3)3·6H2O VO(OCH(CH3)2)3 WCl6 Y(NO3)3·6H2O Yb(NO3)3·xH2O Zn(NO3)2·6H2O ZrO(NO3)2·xH2O Alfa AESAR Fluka Lancaster ABCR GmbH & Co. KG ABCR GmbH & Co. KG Fluka ABCR GmbH & Co. KG ABCR GmbH & Co. KG Avocado Johnson Table S2: Dopants used for the propionic acid based sol-gel synthesis S10 Element B (1) Bi (1)(2) Ce Cr (7) Cu (4) Fe (7) Mn (4) Mo Sb (1)(3) Se (1) Si Sn (3) Ta (2)(5) Ti (2)(5) V (3)(5)(6) W (5)(9) Zr Dopants (8) Ca Cs Ga Ge K Li Mg Na Nb Rb Zn Chemical formula B(OH)3 Bi5O(OH)9(NO3)4 Ce(NO3)3·9H2O Cr(NO3)3·9H2O Cu(NO3)2·3H2O Fe(NO3)3·9H2O Mn(NO3)2·4H2O MoCl3 SbCl5 H2SeO3 Si(OCH2CH3)4 SnO Ta(OC2H5)5 Ti(OCH(CH3)2)4 VO(OCH(CH3)2)3 W-peroxyester ZrO(NO3)2 Supplier Fluka Merck Fluka Aldrich, Sigma Aldrich Fluka Merck Alfa Aesar VWR International Aldrich, Sigma Aldrich Acros ABCR GmbH & Co. KG ABCR GmbH & Co. KG Lancaster ABCR GmbH & Co. KG Laboratory synthesis Avocado Solvent EG/H2O/HNO3 EG/H2O/HNO3 EG/H2O/HNO3 EG/H2O/HNO3 EG/H2O/HNO3 EG/H2O/HNO3 EG/H2O/HNO3 EG/H2O/HNO3 EG/H2O/HNO3 EG/H2O/HNO3 EG/H2O/HNO3 EG/H2O/HNO3 EG EG EG/H2O/HNO3 EG/H2O/HNO3 EG/H2O/HNO3 Ca(NO3)2·4H2O CsNO3 Ga(NO3)3·H2O Ge(OC3H7)4 KNO3 LiNO3 Mg(NO3)2·6H2O NaNO3 Nb(OOCCOOH)5· (HOOCCOOH) RbNO3 Zn(NO3)2·6H2O Merck Strem Aldrich, Sigma Aldrich Aldrich, Sigma Aldrich Fluka Merck Merck ABCR GmbH & Co. KG Fluka Avocado CH3OH CH3OH CH3OH CH3OH CH3OH CH3OH CH3OH CH3OH CH3OH CH3OH CH3OH M x x x x x x x x x x x x x x x x x B x x x x x x x x x x x x x x x x x T x x x x x x x x x x x x x x x x x x Table S3: Precursors used for the ethylene glycol based sol-gel synthesis. The columns labelled M, B and T show if pure oxides (M), binary (B) and / or ternary mixed oxides (T) were synthesized; the column solvent shows if methanol, ethylene glycol (EG) or a mixture of solvents was used; (1) partially volatile (2) highly sensitive to hydrolysis (3) may violently react during hydrolysis / mixing (4) precursor precipitate instead of forming a gel (5) direct start of gelling (6) the vanadium(V) precursor should only be processed further after it has been reduced to vanadium(III) due to a reaction with the solvent (7) Fe and Cr were used in very high concentrations of 1.56 mol/L (8) the dopants were used in concentrations of 0.1 mol/L to give compounds of the type Sb25,9Cr74,1A2Ox or Sb25,9Cr74,1A5Ox (9) the W precursor used was synthesized according to Cronin, J. P. Tarico, D. J. Agrawal, A.; Zhang, R. L. Method for depositing high performing electrochromic layers. US Patent 5,277,986. S11
© Copyright 2026 Paperzz