1 Metabolic flexibility of enigmatic Sar324 revealed through metagenomics and metatranscriptomics Short Title: Disentangling the ecophysiological role of Sar324 Cody S. Sheik1, Sunit Jain1 and Gregory J. Dick1,2,3 1 Department of Earth and Environmental Sciences 2 Center for Computational Medicine and Bioinformatics 3 Department of Ecology and Evolutionary Biology University of Michigan, Ann Arbor, MI, 48109, USA Correspondence: Greg Dick, Department of Earth & Environmental Sciences, The University of Michigan, 1100 N. University Ave., 2534 CC Little Bldg, Ann Arbor MI, 48109-1005, USA. E-mail: [email protected] 2 SI Figure 1. Emergent Self Organizing Map based on tetranucleotide frequencies from metagenomic contigs greater than 2500 bp. Each data point represents a genomic fragment (2500-5000 bp) and the background topology represents the Euclidean distance between tetranucleotide frequency profiles. Thus genomic bins are delineated by ridges. The GB-Sar324 bin is identified, and other major genomic bins are colored: Blue =MG1 Archaea, Dark Red= SUP05 and black = methylotrophs. Sar 324 3 SI Figure 2. Recruitment of genes from published single cell Sar324 genomes to GB-Sar324 Metagenome Bin. Recruitment was performed using BLASTn with high stringency cutoffs (e-value cutoff 10-10, minimum length= 400 bases). Blue dots represent AFIB (AFIB00000000) and red dots represent AFIA (AFIA00000000) single cell genomes. Blue and red lines represent the average 90 85 80 % ID 95 100 80 85 90 95 % ID 100 nucleotide similarity to GB-Sar324. 0 500000 1000000 GB-Sar324 Genome 1500000 2000000 SI Figure 3. Recruitment of Guaymas Basin 454 metagenomic reads to the dark ocean SAR324 single amplified genomes. Reads were recruited with BLASTn using a similarity of >90% and bit scores over 70. Coverage was calculated with a 100 base pair sliding window. 4 SI Figure 4. Representative CTD depth profile from Guaymas Basin. A) Oxygen concentration, B) Beam transmission, C) Temperature and D) Sar324 abundance from clone libraries (Dick and Tebo, 2010) and high throughput tagged ribosomal sequencing libraries (Anantharaman, 2012). Note that the clone library data is as a percentage of Bacteria, whereas the tag sequence data is as a percentage of Bacteria plus Archaea. 5 6 G aI ua as aym as v ati ym Gu Ba sin Ba sin (2 0 (20 621 0.5 Bootstrap Support (%) >95 90-95 85-89 80-84 70-79 50-69 eo ha oco ccu s ho mo riko shii co (NP cc _14 us 286 ko 1.1) da ka re ns is (Y P_ 18 47 03 .1) glo ulg sf idu NP s( _0 70 idu 46 5.1) 5804 (EAY C a . N itrosp Ba ira de cill fluvii (CBK us 41608 su .1) bti l p Le to i sp ril lu m ru r ba .1) 42 38 92 is ( NP _ Form IV 1) arum b lum ru .1) 51 26 66 spiril P_ (N 6. m Lepto Th io Pyr tep SC (A er ium ob lor Ch 84) Archaeoglobus fulgidus (NP_070416.1) 973 2 062 GC ) 7.1 ) 59 3.1 05 559 X 0 AD (ADX ( G 06 03 07 -D 3-F A0 007 A00 90.1) X055 AA AA AA 0 (AD 1 C C ACGC -C 1 G G S A00 A A C S SC SCGC SCGC AAA240-J17 (ADX05610.1) SCGC SCG AAA24 CA 0-J09 (A AA0 DX0560 03-J 9.1) 20 ( ADX 055 95.1 ) 04 c Ar 4 (2 um AY (E 56 52 1) 4. Form II ) .1 99 55 0 DX Th ar32 GBS SC GC AA ba A0 cill 03 AA us -F A2 d e 15 40 -K0 nitrif (A ic 4( AD ans DX SCGC AAA24 X0 (Y 05 0-O02 5 62 P_3 618 (ADX05 4 628.1) .1) 163 .1) 96 .1) 05627.1 ) SCGC AAA240-N18 (ADX red SU P05 (A Form I bu 62 17 2 436 505 CX3051 18) ) 3.1) in (2062325545).1) Guaymas Bas 7 748 _42 1) (YP 0. ) brum 0.1 478 u r 9 2 m 5 2 lu il 3 2 pir 41 dos P_ 00 Rho (Y P_ (Y es id sis n o r e oe ae sp ph ae io rs ibr te v c a lfo su ob De od Rh uncultu M Ni ethyloco ccus tro capsu so latus mo (YP_ na 1151 se 43.1) uro pa ea (N P_ 84 19 43 .1) ) 40.1 708 P_1 s (Y s gatu n a lo yz se Or ococcu ech Syn coccus mobilis (ZP_01125685.1) Nitro nd ica (Y 6 P_ 54 22 1.1 ) SI Figure 5. Phylogenetic inference of large subunit 1,5-ribulose bisphosphate genes (RuBisCO). Sar324 related sequences are highlighted in black and the GB-Sar324 RuBisCO gene is bolded. Form III SI Figure 6. Recruitment of 454 metagenome reads to the phmoABC operon from SAR324 single amplified genome (AAA240-J09). Reads were recruited with BLASTn using a similarity of >90% and bit scores over 70. 7 SI Figure 7. Recruitment of paired end illumina metatranscriptome reads mapped to the phmoABC operon from SAR324 single amplified genome (AAA240-J09). Reads were mapped with BWA and alignments were visualized with IGV (See methods section). The order of genes for the Phmo are CAB, which can clearly be seen through mapping. 8 9 SI Figure 8. Depiction of contig synteny in GB-Sar324 and single cell genome isolates. Contigs all contain sulfur cycling genes, the expression profiles of representative genes are shown in Figure 3. These five contigs from GB-SAR324 are present in as single contig in the AFIA SAG (AAA240-J09), thus is used as a reference. Colors represent contigs from GB-SAR324, while inside contig boxes lines represent similarity between GB-SAR324 and SAGs AFIA0000000 SAG 2000 4000 6000 AFIB0000000 SAG 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 8000 10000 12000 14000 16000 18000 20000 22000 16000 18000 20000 22000 24000 26000 28000 30000 24000 26000 28000 30000 Guaymas Basin SAR324 Metagenome 2000 C1212 4000 6000 8000 10000 12000 14000 C352 32000 C41 34000 36000 38000 40000 42000 C669 44000 10 SI Figure 9. Phylogeny of the dsrA gene from SAR324 in relation to sulfur oxidizing and sulfur reducing microorganisms. Sulfur Reducing Organisms 77 Sulfur Oxidizing Organisms 92 60 Chlorobiacea SAR324 SAG AAA240-C23 81 80 SAR324 SAG AAA003-G02 98 SAR324 SAG AAA240-N20 51 82 Guaymas Basin SAR324 Magnetococcus sp. MC-1 (NZ_AAAN02000009) Moorella thermoacetica (NC_007644) 82 10 % Pyrobaculum 11 SI Figure 10. Phylogeny of the aprA gene from SAR324 to sulfur oxidizing and sulfur reducing microorganisms. 92 Sulfur Reducing Deltaproteobacteria 59 Thiobacillus denitrificans (637709551) 62 97 Thiobacillus thioparus (2515447707) Thiobacillus denitrificans (2515457036) 100 Thiothrix nivea (2506752823) Sedimenticola selenatireducens (2513982171) Lamprocystis purpurea (2515666939) 72 Thiorhodococcus drewsii (2510114581) Beggiatoa sp. PS (641100078) Thiocystis violascens (2508739308) Thermodesulfobium narugense (2504785014) Desulfobacca acetoxidans (2504154265) 68 64 66 99 100 Chlorobium tepidum (637115811) (Chlorobium chlorochromatii 637774125) Pelodictyon phaeoclathratiforme (642726341) Chlorobium phaeobacteroides (642684333) 63 Thermodesulfovibrio yellowstonii (643376069) 40 100 83 65 Guaymas Basin SAR324 SAR324 SAG AAA003-C18 (ADX05636.1) SAR324 SAG AAA240-N20 (ADX05658.1) Thermodesulfobacterium sp. OPB45 (2506601900) 81 100 Thermodesulfatator indicus (2505283574) Sulfur Reducing Clostridia 100 100 98 75 Archaeoglobus 100 100 63 100 97 Succinate/fumarate Dehydrogenase 0.2 Thermophillic Crenarchaeota Caldivirga 99 Alphaproteobacteria Gammaproteobacteria 12 SI Figure 11. Phylogeny of the SAT gene from GB-SAR324 to sulfur oxidizing and sulfur reducing microorganisms. 74 Sulfur Oxidizing Gammaproteobacteria 61 Alcanivoraceae Gammaproteobacterium IMCC2047 ctg 507 (651416985) 92 85 68 33 100 Gammaproteobacterium NOR51-B Marine Gammaproteobacteria NOR5 Marine Gammaproteobacteria OM60 Desulfarculus baarsii (648111637) 57 Deltaproteobacterium NaphS2 (648675202) Guaymas Basin SAR324 100 61 Sulfur Reducing Deltaproteobacteria 64 Syntrophobacter fumaroxidans (639701810) 48 Desulfobacca acetoxidans (2504154267) 70 100 Chlorobi 90 61 47 45 46 44 Sideroxydans lithotrophicus (646689383) 96 Thioalkalivibrio 98 Thiobacillus Ca. Ruthia magnifica (639757769) Gammaproteobacterium HTCC5015 (647606004) 100 Ca. Desulforudis audaxviator (641593890) Desulfotomaculum gibsoniae (2508514668) 100 100 0.1 Desulfotomaculum Staphylococcus 13 SI Figure 12. Phylogeny of the SoxZ-like gene from SAR324 to sulfur oxidizing microorganisms. Sulfurihydrogenibium sp. YO3AOP1 (YP_001930709.1) 97 Sulfurihydrogenibium yellowstonens (ZP_04584674.1) 96 88 Sulfurihydrogenibium azorense (YP_002729641.1) Persephonella marina (YP_002731652.1) Hydrogenobaculum sp. Y04AAS1 (YP_002122130.1) 41 Thermocrinis albus (YP_003473526.1) 81 Hydrogenobacter thermophilus (YP_003433166.1) 56 Hydrogenivirga sp. 128-5-R1-1 (ZP_02176716.1) 72 Aquifex aeolicus (NP_214240.1) 78 Acidithiobacillus caldus (ZP_05291811.1) 84 Acidithiobacillus caldus (YP_004749566.1) 91 Acidithiobacillus thiooxidans (ZP_09995370.1) 99 Acidithiobacillus ferrivorans (YP_004784910.1) Thiocapsa marina (ZP_08771913.1) 44 marine gamma proteobacterium HTCC2080 (ZP_01627098.1) 68 73 78 gamma proteobacterium NOR51-B (ZP_04957680.1) Thiorhodovibrio sp. 970 (ZP_09810551.1) 93 Thiorhodococcus drewsii (ZP_08823721.1) 49 Magnetococcus marinus (YP_866895.1) GB-SAR324 (2062278661) 99 SAR324 cluster bacterium SCGC AAA001-C10 (ZP_10757415.1) Ca. Methylomirabilis oxyfera (YP_003206554.1) Anaeromyxobacter sp. Fw109-5 (YP_001380040.1) Paracoccus denitrificans (CAA55824.2) 1 14 SI Figure 13. Phylogeny of the SoxY-like gene from GB-SAR324 to sulfur oxidizing microorganisms and phylogenetically similar Desulfoferrodoxin genes. 65 Polymorphum gilvum (SoxY, YP_004304422.1) Roseibium sp. TrichSKD4 (SoxY, ZP_07661876.1) Aurantimonas manganoxydans (SoxY, ZP_01225768.1) Fulvimarina pelagi (SoxY, ZP_01439479.1 ) 49 Thalassospira profundimaris (SoxY, ZP_11122281.1) Methylobacterium populi (SoxY, YP_001926807.1) Hyphomicrobium denitrificans (SoxY, YP_003754845.1) Rhodopseudomonas palustris (SoxY, YP_001993924.1) Methylosinus trichosporium (SoxY, ZP_06890155.1) Magnetospirillum gryphiswaldense (SoxY, CAM76245.1) 75 Magnetospirillum magneticum (Hypothetical protein, YP_420219.1) Rhodopseudomonas palustris (SoxY, P_001990583.1) Halomonas sp. KM-1 (Hypothetical protein, ZP_10777717.1) Bradyrhizobium sp. STM 3843 (soxY, ZP_09432158.1) 53 Methylobacterium sp. 4-46 (SoxY, YP_001773624.1) Hyphomonas neptunium (SoxY, YP_761173.1) 43 Oceanibaculum indicum (SoxY, ZP_11128108.1) Sinorhizobium fredii ( SoxY, YP_005191851.1) 99 Hyphomicrobium denitrificans (SoxY, YP_003755533.1) Hyphomicrobium denitrificans (SoxY, EHB75152.1) Methylobacillus flagellatus (Hypothetical protein, YP_546685.1) Sulfurimonas denitrificans (SoxY, YP_392777.1) 44 Sulfurimonas gotlandica (Tat pathway signal protein, ZP_05071877.1) Sulfurimonas autotrophica (SoxY, YP_003892053.1) 83 Sulfuricurvum kujiense (SoxY, YP_004059313.1) Sulfurihydrogenibium azorense (Tat signal sequence domain protein, YP_002729640.1) 50 79 Sulfurovum sp. AR (SoxY, ZP_10062574.1) Sulfurovum sp. NBC37-1 (SoxY, YP_001357815.1) Magnetococcus marinus (SoxY, YP_867607.1) 46 Magnetococcus marinus (SoxY, YP_866894.1) 52 82 Acidithiobacillus thiooxidans (SoxY, ZP_09995124.1) Acidithiobacillus caldus (SoxY, YP_004749567.1) 77 Acidithiobacillus caldus (SoxY, ZP_05291810.1) 80 45 Acidithiobacillus ferrivorans (Hypothetical protein, YP_004784909.1) Acidithiobacillus thiooxidans (Hypothetical protein, ZP_09995371.1) 89 71 42 Anaeromyxobacter sp. Fw109-5 (Hypothetical protein, YP_001380040.1|) Ca. Methylomirabilis oxyfera (hypothetical protein, YP_003206554.1) GB-SAR324 (Desulfoferrodoxin, 2062278663) Magnetococcus marinus (Desulfoferrodoxin, YP_866847.1) 58 67 Methanocella conradii ( Rubredoxin, YP_005381203.1) Ferroglobus placidus (Desulfoferrodoxin, YP_003436391.1) Paracoccus denitrificans (soxB, CAA55824.2) 0.5 15 SI Figure 14. Phylogeny of the SoxB-like gene from GB-SAR324 to sulfur oxidizing microorganisms. Sulfitobacter sp. EE-36 (ZP00956139.1) 100 64 Sulfitobacter sp. NAS-14.1 (ZP00963375.1) Roseobacter denitrificans OCh 114 (YP681834.1) Rhodobacterales bacterium HTCC2150 (ZP01743245.1) Roseovarius nubinhibens ISM (ZP00961294.1) Sulfitobacter sp. NAS-14.1 (ZP00963529.1) 54 Sagittula stellata E-37 (ZP01748359.1) 100 Roseobacter sp. MED193 (ZP01055912.1) Ruegeria pomeroyi DSS-3 (YP166249.1) 100 Maritimibacter alkaliphilus HTCC2654 (ZP01014859.1) Paracoccus denitrificans (CAA55824.2) 52 Rhodovulum sulfidophilum (AAF99435.1) Pseudaminobacter salicylatoxidans KCT001 (CAC39170.2) 62 Stappia aggregata IAM 12614 (ZP01549055.1) 81 Aurantimonas manganoxydans SI85-9A1 (ZP01225765.1) 80 Fulvimarina pelagi HTCC2506 (ZP01439476.1) 100 Bradyrhizobium japonicum USDA 110 (NP770155.1) 99 Magnetospirillum magnetotacticum MS-1 (ZP00051299.2) 97 Starkeya novella DSM 506 (AAF61448.2) 51 Rhodopseudomonas palustris CGA009 (NP949801.1) 100 Rhodopseudomonas palustris HaA2 (YP487967.1) 100 Rhodopseudomonas palustris BisB5 (YP571371.1) 90 Magnetococcus marinus MC-1 (YP865819.1) 56 Halorhodospira halophila SL1-9 (YP001003505.1) 99 100 Chlorobium limicola (AAL68888.1) Chlorobium tepidum TLS (NP661913.1) Chlorobium chlorochromatii CaD3 (YP380218.1) 59 Thiomicrospira crunogena XCL-2 (YP391815.1) 72 Oceanospirillum sp. MED92 (ZP01167148.1) 58 Bradyrhizobium japonicum USDA 110 (NP767649.1) 98 100 Nitrobacter hamburgensis X14 (YP578859.1) Allochromatium vinosum (ABE01359.1) 81 Marine Gammaproteobacterium HTCC2080 (ZP01627095.1) Polaromonas sp. JS666 (YP549439.1) 54 Ralstonia solanacearum GMI1000 (NP521372.1) 48 Ralstonia eutropha JMP134 (YP297452.1) 57 Anaeromyxobacter dehalogenans 2CP-C (YP465486.1) Methylibium petroleiphilum PM1 (YP001021622.1) Herminiimonas arsenicoxydans (CAL61372.1) Thiobacillus denitrificans ATCC 25259 (YP314321.1) Dechloromonas aromatica RCB (YP286328.1) 59 96 Hydrogenophilus thermoluteolus (BAF34125.1) Aquifex aeolicus VF5 (NP214237.1) Sulfurimonas denitrificans DSM 1251 (YP392780.1) Thermus thermophilus HB27 (YP005021.1) 75 100 Thermus thermophilus HB8 (YP144683.1) GB-SAR324 0.05 16 SI Figure 15. Genes detected only in the background cDNA metatranscriptome. Percentages are calculated as fraction of genes found only in the background cDNA libraries. Protein Metabolism es at dr hy bo Fatty Acids, Lipids, and Isoprenoids r Ca ed bas ingster Clu all Mis Am ino Ac ids ve s Dormancy ...D eri va ti s tem sys sub cell ane ous 17 ce ins ou s , Vit tors g-ba sed Co fac s ive sub lla ne am m RNA Metabolis at riv De ms d an ids Ac syste M is , Pr ino osth Am etic Gro ups , Pig me nts 2m ore SI Figure 16. Genes detected only in the plume cDNA metatranscriptome. Percentages are calculated as fraction of genes found only in the plume cDNA libraries. The four unmarked categories at the bottom are related to (from left to right) quorum sensing and biofilm formation, macromolecule formation and synthesis, hormone synthesis, and proteorhodopsin synthesis. s ipid , an d Is opr ids eno Clus terin s, L y Fatt Acid DNA Metabolism Plume only Cell W all and Capsu le Str ce ,D ise e d ot cle Nu m s ide olis se atio an d De f 2 mo re en se lism ol Metab bo eta Sulfur tab M en rog Me sp ir n as an tein spo n Re len Nit Pro Re Vi ru s ide os tes cle Nu dra ohy Carb ess olism m metab Potassiu ism 2m or e re 2 mo 2 more 18 SI Figure 17. Order of genes related to SAR324’s putative soxZ and comparison to closest organisms in IMG determined by BLASTp. Genes that could potentially be related to the SOX system were translated by IMG and searched individually to find closest homolog proteins. Numbers between genes represent the percent similarity score from BLAST. Genes are color coded for reference in closest relative genomes. * Denotes that both the soxZ (30%) and the desulfoferrodoxin (35%) were both the top hits to the Anaeromyxobacter genome. SCGC AAA001-C10 is a Dark ocean SAR324 single amplified genome. Lines behind genes denotes whether genes were found on a single (no breaks) or multiple contigs and the number at the beginning and end denote region of the genome. rt ra H ns yp po ot rt he do H t i ca m yp ai l ot n he tic PQ a Q l -C a D es tab ul fo olis m fe rro do 5’ xi ’N n uc le ot id as So e xZ C yt oc hr om H yp e ot he C SC tic al O H Fam yp ily ot h Th etic al io re do O xi M n C Li on p Th op ta io l I rote inin nt g er in ch an ge IMG Annotation Su lfu Genome Name 15000 GB-SAR324 5000 97 96 96 98 ND 94/96 99 95 93 94 94 97 94 91 SCGC AAA001-C10 36 35 Persephonella marina EX-H1 1795420 1807941 e as cl cy te la ny ua ig al D ic t he ot cal i yp H thet l o ica yp et H oth cal i yp et H th in o yp te B) H pro ox po (S Li e as id ot le uc ’N 5’ g in in xA ta So on C xZ n xi So r xY do to la So re io gu re Th e xX at et ac So o et Ac 30/35* Anaeromyxobacter sp. Fw109-5 3295875 3299685 n ia m do se xin ne o d e da rro as ho e R lfof cal er st u ti oe es e D oth ph yp hos H op al et n M ei ot pr po Li Niastella koreensis GR20-10 26 6394474 6392477 BLASTp Similarity al tic he ot al yp tic H the o e m yp H hro oc yt C
© Copyright 2025 Paperzz